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Abstract: In this paper, we propose a novel guided normal filtering followed by vertex updating for
mesh denoising. We introduce a two-stage scheme to construct adaptive consistent neighborhoods
for guided normal filtering. In the first stage, we newly design a consistency measurement to select
a coarse consistent neighborhood for each face in a patch-shift manner. In this step, the selected
consistent neighborhoods may still contain some features. Then, a graph-cut based scheme is
iteratively performed for constructing different adaptive neighborhoods to match the corresponding
local shapes of the mesh. The constructed local neighborhoods in this step, known as the adaptive
consistent neighborhoods, can avoid containing any geometric features. By using the constructed
adaptive consistent neighborhoods, we compute a more accurate guide normal field to match the
underlying surface, which will improve the results of the guide normal filtering. With the help of the
adaptive consistent neighborhoods, our guided normal filtering can preserve geometric features well,
and is robust against complex shapes of surfaces. Intensive experiments on various meshes show the
superiority of our method visually and quantitatively.

Keywords: mesh denoising; guided normal filtering; feature preserving; graph-cut; bilateral filtering

1. Introduction

A triangulated mesh is one of the typical data types for representing 3D models.
Commonly, triangulated meshes can be generated by using the original 3D coordinate
datas that collected by 3D model scanning equipments, such as Kinect, laser scanner, CT,
etc. However, there are many noises in the original 3D coordinate datas, and the noises
also are generated in the 3D models reconstruction process [1,2]. These noises will bring
challenges to 3D models visualization, splitting, spatial analysis, object extraction and
3D printing etc. [3–5]. Therefore, it is very significant to eliminate noises in triangulated
meshes. The key issue is how to retain the original geometric structures and fine details
when eliminate the noises. This problem becomes more challenging for the surfaces
including complex shapes (e.g., narrow structures, multi-scale features, and fine details).

Over recent decades, the filtering methods have been widely used in mesh denoising,
and can be roughly divided into isotropic and anisotropic filtering methods. The classical
isotropic methods [6,7] mainly focus on removing the surface noise, but they neglect to
preserve geometric features during the filtering process. Thus, these isotropic methods tend
to produce denoised results with significant shape distortion. To address this issue, many
anisotropic filtering methods [8–20] have been proposed. Bilateral filtering is a representa-
tive method in these anisotropic methods, which has been successfully applied in image
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processing for its ability of preserving features. Due to the success of bilateral filtering
in image processing, it has been extended to geometry processing. Fleishman et al. [12]
proposed a bilateral mesh denoising, which can directly remove noise via smoothing vertex
positions. Zheng et al. [15] proposed a bilateral normal filtering (BNLF) by using normal
filtering followed by vertex updating. Although the bilateral normal filtering proposed
in [15] can preserve geometric features to some extent, it cannot effectively preserve sharp
features, multi-scale features, and fine details in the case of high noise. The reason may be
as follows. The bilateral normal filtering lacks a reliable guidance normal field to facilitate
the filtering process. Thus, Zhang et al. [21] presented a patch-shift method to compute
the guidance normal field for facilitating the bilateral normal filtering. Their method can
preserve sharp features well, but may blur small-scale features and fine details because
of their consistent neighborhoods constructing strategy. More specifically, when the sur-
face contains complex shapes (e.g., narrow structures, multi-scale features, fine details),
the uniformly constructed neighborhoods by their method inevitably contain geometric
features in them, which further causes these contained features to be blurred in the normal
filtering process. Thus, it is still an open problem to find an effective strategy to construct
local neighborhoods that avoid including any geometric features. With the help of the
well constructed local neighborhoods (without any geometric features contained), we can
compute a guide normal field that strictly matches the underlying shape of the surface,
which will greatly improve the results of the guided normal filtering.

In recent years, optimization-based methods are another kind of technique for mesh
and image denoising. In order to preserve sharp features, the sparse optimization meth-
ods have been widely applied [3,5,22–28]. He and Schaefer [22] extended L0 minimiza-
tion to triangulated meshes for recovering piecewise constant surfaces. Zhang et al. [23]
and Wu et al. [24] applied TV (total variation) regularization to mesh denoising for its
edge-preserving property. Although the above L0 and L1 minimization methods achieve
impressive results for preserving sharp features, they inevitably suffer from the undesire
staircase artifacts in smoothly curved regions. In particular, this drawback is more severe
for L0 minimization [22,29], which may flatten some weak features and produce false edges
in smoothly curved regions. Liu et al. [25] and Zhong et al. [26,30] proposed high-order
based methods to overcome the above limitations of works [22–24,29]. Their methods
can preserve sharp features and simultaneously recover smoothly curved regions well.
However, in the presence of high noise, these high-order based methods may smooth
sharp features and blur fine details. Many low-rank optimization methods [31–34] were
introduced in mesh denoising to recover pattern similarity patches of the underlying sur-
face. Unfortunately, these low-rank based methods cannot preserve sharp features well.
In addition, because of the multi-patch collaborative mechanism, these low-rank based
methods may be computationally intensive sometimes.

More recently, learning-based methods [35–38] have been gaining widespread atten-
tion, which have an advantage of parameters adjustment-free. Wang et al. [35] proposed a
cascade normal regression (CNLR) method. The relation between the filtered results and
the ground-truth was learned by CNLR. The advantage of this novel method is that there
was no need to adjust parameters manually to eliminate noises. Generally, the performance
of this method is well for small-scale noises, but it is not capable to dispose large-scale
noises. In order to retain the geometrical structure features and fine details of the textures,
Wang et al. [36] put forward a two-stage leaning method. Firstly, the face normal rela-
tion between the models with noises and the ground-truth was learned and the noises
were eliminated by machine leaning. Secondly, the geometrical structure features and
fine details of the textures were recovered by machine learning, so as to solve the object
blurring issue generated in the first stage. Although these learning-based methods are free
of parameter-tuning, and preserve geometric features well, they are highly dependent on
the completeness of the training data set.

As we have seen, it is still quite challenging to preserve geometric features while
removing noise, especially when the noisy mesh containing complex shapes (e.g., narrow
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structures, multi-scale features, and fine details). In view of these issues, we propose a
guided normal filtering based on adaptive consistent neighborhoods for mesh denoising.
The adaptive consistent neighborhoods are constructed by a proposed two-stage scheme.
In the first stage, we design a consistency measurement to select the local neighborhood
of each face (called the coarse consistent neighborhood) with the most consistent normal
orientations. Then, a graph-cut based approach is iteratively performed to construct the
final consistent neighborhood without any features contained. By using the constructed
adaptive consistency neighborhoods, we can easily get the guidance normal field of the
surface for restoring the noisy normal field. Following the guided normal filtering, we re-
construct vertex positions to match the filtered normal field. Taking a noisy mesh as input,
our mesh denoising can recover complex shapes of the surface well while removing noise.
Specifically, the main contributions of this paper are listed as follows:

• A reliable consistency measurement is designed to explicitly select the coarse consis-
tent neighborhood containing the fewest features, thus providing a favorable neigh-
borhood for each mesh face toward features-preserving effect. Then, a graph-cut
based scheme is proposed, which can adaptively construct the more accurate neigh-
borhood that does not contain any features. We can use the constructed consistent
neighborhoods to compute a more accurate guide normal field.

• A guided normal filtering method via the adaptive consistent neighborhoods is pro-
posed to restore the noisy normal field. We show the performance of our method
on synthetic data including CAD and non-CAD meshes and a variety of scanned
data acquired by the laser scanners and Kinect sensors. Experiments demonstrate
that our method outperforms the existing state-of-the-art mesh denoising methods
qualitatively and quantitatively.

The rest of the paper is organized as follows. In Section 2, we detail our guided normal
filtering method based on constructing adaptive consistent neighborhoods. Then, our
visual and numerical results are given in Section 3, and we discuss our mesh denoising
method in various aspects in Section 4. Finally, we conclude the paper and give some
comments for future work in Section 5.

2. Methodology

In this section, we first give a brief review of the guided normal filtering, and explain
motivations of our mesh denoising method. Then, we introduce our two-stage scheme to
construct adaptive consistent neighborhoods for computing a reliable guide normal field.
Finally, we articulate the whole framework of our mesh denoising method.

2.1. Background of Guided Normal Filtering

Guided normal filtering [21] followed by vertex updating is a well developed feature-
preserving mesh denoising framework. The key of guided normal filtering is that it
provides a robust guidance normal for each face of the mesh. For each face, the guidance
normal is obtained by averaging the face normals in a patch that contains the current face.
Then, the joint bilateral filtering based on the computed guidance normal field is performed
to get the filtered normal n

′
i of face fi as follows:

n
′
i =

1
ηi

∑
f j∈Pi

Ajρr(ci, cj)ρs(gi, gj)nj , (1)

where ηi = ‖ ∑
f j∈Pi

Ajρr(ci, cj)ρs(gi, gj)nj‖2. Aj, cj, nj are the area, centroid, and face normal

of the face f j in the 1-ring neighborhood Pi of the face fi, respectively. gi, gj are the guidance

normals of fi, f j, respectively. ρr(ci, cj) = exp(− ‖ci−cj‖2
2

2σ2
r

), ρs(gi, gj) = exp(− ‖gi−gj‖2
2

2σ2
s

) are
the Gaussian functions, where σr, σs are variance parameters. ci is the centroid of the
face fi, and ‖ · ‖2 is the Euclidean norm. According to the Equation (1), the filtered face
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normals of the surface can be obtained, then we reconstruct vertex positions to match these
filtered normals.

Due to a robust estimation provided by the guidance for the true normals of the noisy
mesh, guided normal filtering shows the superiority of sharp features preserving and
robustness for noise. However, when the mesh contains complex shapes (e.g., narrow
structures, multi-scale features, and fine details), they cannot get a proper guidance due
to the unreasonable patch selected by the consistency measure H(Pij). As we can see the
Figure 1, according to the smallest value of the consistency measure H(Pij), the most consis-
tent neighborhood of the face (in purple) is selected, while the neighborhood contains sharp
features more so that the guidance of the face (in purple) is not proper. Thus, the filtered
results will blur sharp features in these regions. To obtain more faithful results in these
regions, we propose a two-stage scheme to construct adaptive consistent neighborhoods
for guided normal filtering. The construction pipeline is demonstrated in Figure 2. In the
first stage, inspired by [21,39], we newly define a consistency measure to select a coarse
consistent neighborhood for each face in a patch-shift manner. Then, a graph-cut based
scheme is iteratively performed to adaptively construct different neighborhoods to match
the corresponding local shapes of the mesh.

C = 0.0263 

H = 0.4588

C = 0.0210 

H = 0.4544

C = 0.0264 

H = 0.2772

C = 0.0398 
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Figure 1. The consistent neighborhood selected by H [21] and C. C is computed from Equation (2).
The neighborhood framed by red and blue dashed box are selected by C and H, respectively.

Noisy mesh
δ=0.156 δ=0.862

Constructed adaptive consistent neighborhood

First stage Second stage 

…

Adaptive 

consistent neighborhood

Figure 2. The pipeline of the proposed two-stage method for constructing adaptive consistent
neighborhood. In the first stage, for a face (in purple), we compute a coarse consistent neighborhood
by using patch-shift method with the proposed consistency measure. In the second stage, we propose
a graph-cut based scheme for iteratively refining the obtained coarse consistent neighborhoods in a
shape-aware manner.

2.2. Coarse Consistent Neighborhood Selection

The consistent neighborhood is the key of recovering geometrical features and fine
details in the denoised results from noisy mesh in the guided normal filtering (GNLF)
framework. However, in the regions of narrow structures, multi-scale features, and fine
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details, a reliable consistent neighborhood can not be obtained in the GNLF framework
so that the denoised results blur geometrical features and details. To solve this problem,
we propose a two-stage method to obtain the adaptive consistent neighborhood for guided
normal filtering. Our first-stage method aims to select a coarse consistent neighborhood for
each face fi from all 1-ring neighborhoods that contain fi. If all the faces in the neighborhood
of fi have similar normal directions, then using this neighborhood to compute the guidance
normal at fi will gets more faithful denoising results. However, it is hard to obtain this
consistent neighborhood of fi, especially in the regions of the complex shapes (e.g., narrow
structures, multi-scale features, and fine details). As we can see the Figure 1, the consistent
neighborhood that has the similar normal directions of the purple face can not be searched
in all 1-ring neighborhoods that contain fi by using a consistency measure. For example,
by using the consistency measure H(Pij), the GNLF method gets worse neighborhoods
in which the faces normals directions are disordered. Thus, to solve this problem, a new
consistency measure is proposed to search a coarse consistent neighborhood for each
face in a patch-shift manner, in which the normal directions of the faces are as similar as
possible. In the second-stage, a graph-cut based scheme is iteratively performed in the
coarse consistent neighborhood, which adaptively constructs different neighborhoods to
match the corresponding local shapes of the mesh.

To evaluate the consistency of the neighborhood of fi, the new consistency measure is
as follows:

C(Pij, fi) = F(Pij) · S(Pij, fi), (2)

where Pij is a 1-ring neighborhood of the face f j that contains the face fi. F(Pij) is used to
measure the flatness of Pij.

F(Pij) =
(

max
f j , fk∈Pij

‖nj − nk‖2
)
·
( 1

APij |Pij|
∑

f j∈Pij

Aj‖nj − nPij‖2
)
, (3)

where |Pij| is the face number of the neighborhood Pij, and APij =
1
|Pij | ∑

f j∈Pij

Aj is the average

area of all the faces in the neighborhood Pij. nPij =
1

‖ ∑
f j∈Pij

Ajnj‖2
∑

f j∈Pij

Ajnj is the average

value of the normals of each face in the neighborhood Pij. The smaller of F(Pij) means that
the candidate neighborhood Pij is smoother.

S(Pij, fi) is used to measure the similarity of the normal directions between the face fi
and the neighborhoods Pij, and the smaller value means more similar.

S(Pij, fi) = (max
f j∈Pij
‖ni − nj‖2) · (‖ni − nPij‖2). (4)

Thus, the product C(Pij, fi) can measures the consistency of the neighborhood of the
face fi well, and the coarse consistent neighborhood Pc

i for fi in a patch-shift manner [21]
can be searched by using C(Pij, fi). As seen in Figure 1, a neighborhood of the face (in
purple) is searched by using C(Pij, fi), in which the normal directions of the faces are as
similar as possible. Due to the narrow structures, the neighborhood also contains some ge-
ometric features. Thus, we perform a graph-cut based scheme in the neighborhood, which
adaptively splits some faces in the different neighborhoods to match the corresponding
local shapes of the mesh.

2.3. Adaptive Consistent Neighborhood Construction

When the mesh includes complex shapes (e.g., narrow structures, multi-scale features,
and fine details), the coarse consistent neighborhood obtained by the first stage may still
contain geometric features. In this case, if the coarse consistent neighborhood is used
to calculate the guidance normal, which will blur sharp features. So, the second-stage
strategy based on the graph cut scheme is proposed to iteratively split some faces from the
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first-stage consistent neighborhood, which can obtain an adaptive consistent neighborhood
that has the more similar orientations with the current face. In each iteration, we firstly
build a weighted graph based on the given neighborhood to obtain the indicator vector.
Then, we use the indicator vector to bipartition the given neighborhood. Finally, a mea-
sure is introduced to judge the rationality of the segmented neighborhood for avoiding
over-segmentation. The iterative graph cut scheme for obtaining the adaptive consistent
neighborhood is sketched in Algorithm 1, and the main steps are as follows:

(1) Construct Laplacian matrix. As graph construction has a crucial effect on the
efficiency of the graph cut scheme, we firstly construct graphs over the given patch for our
iterative graph cut scheme. We consider an undirected weighted graph Gp = {T, E, W}
composed of a node set T = {τi : i = 1, 2, . . . , m}, an edge set E connecting nodes, and
a similarity matrix W, where m is the number of the node set. W is a real symmetric
m×m matrix, whose element wi,j in i-th row and j-th column is the weight assigned to the
weighted edge connecting nodes τi and τj. Our constructed graph Gp is used to spilt some
faces in the given patch based on the graph cut scheme, so T in the graph Gp is the face set
of the given patch.

In the graph cut scheme, the weight edge that is crossed the segmentation line of Gp
should have a relatively low-value. To this aim, if the faces correspond to τi and τj which
not share a common edge, we set wi,j equal to 0; otherwise, wi,j is set as follows:

wi,j = α · exp(−
‖nτi − nτj‖2

2

σ2
p

), (5)

where nτi , nτj are the face normals of the given patch that correspond to nodes τi and τj. σp
is a scaling parameter, which controls the decreasing speed of wij. Empirically, we set σp
equal to 0.8 in our experiments. α is defined as:

α =

{
0.1, ∠(nτi , nτj) ≥ θ

1, ∠(nτi , nτj) < θ
, (6)

where θ is a user-specified angle threshold for identifying the geometry feature, which will
be discussed in Section 4. Then, we build the corresponding Laplacian matrix L ∈ Rm×m

of the graph Gp, which can be written as:

L = D−W, (7)

where D = diag(D1, ..., Dm), and Di =
m
∑

i=0
wij is the sum of the i-th row elements in the

similarity matrix W.
(2) Obtain segmented result. According to the generalized eigensystem [40] of the

Laplacian matrix L, the eigenvector χ = {χ1, χ2, ..., χm} corresponding to the second
smallest eigenvalue of the eigensystem is obtained. Each element in the eigenvector χ
corresponds to a node in the graph Gp, and the value of the elements represents the
geometric distribution of the nodes in the graph Gp. We sort the elements of the vec-
tor χ in increasing order, and then we get the sorted vector χ̂. ϕ(·) is a index mapping
from the vector χ to the sorted vector χ̂, e.g., χi = χ̂ϕ(i) and χϕ−1(i) = χ̂i. The jump
point in the sorted vector χ̂ means there is a splitting point in the graph Gp. In or-
der to find the jump point effectively, we first build the first-order difference vector
∇χ̂ = {χ̂2 − χ̂1 , ..., χ̂|p| − χ̂m−1} ∈ Rm−1. Then, we search the largest value of the
vector ∇χ̂ and record the corresponding index in the ∇χ̂ as λ. The index mapping ϕ(·)
can be used to obtain the original order in the eigenvector χ, and we can use the splitting
index φ−1(λ) to divide the nodes in graph Gp into two sets:

A = {τφ−1(1) , ..., τφ−1(λ)} & B = {τφ−1(λ+1) , ..., τφ−1(m)}. (8)
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Finally, the set containing the current face is selected as the intermediate result of the
adaptive consistent neighborhood.

(3) Compute stopping criteria. To avoid over-segmentation, a measure δ(Pk, Pk+1, fi)
is proposed as follows:

δ(Pk
i , Pk+1

i , fi) =
C(Pk+1

i , fi)

C(Pk
i , fi) + ε

, (9)

where ε is a small positive number to avoid zero division, and Pk
i , Pk+1

i are the neighborhood
of the face fi of the last iteration and the segmented neighborhood of the face fi, respectively.
C(·, ·) is our proposed consistency measure, which is defined in (2). δ(Pk

i , Pk+1
i , fi) measures

the consistency change between Pk
i and Pk+1

i . A threshold β is introduced to manually tune
the segmented degree through (9). If δ(Pk

i , Pk+1
i , fi) < β, our iterative graph cut scheme

continues with the previous segmented result as the input patch; otherwise, the iterative
scheme is stopped and the final segmented neighborhood P∗i = Pk

i is outputted.

Algorithm 1: Adaptive consistent neighborhood construction.
Input: Pc

i , β, K, ε;
Initialization: k = 0, Pk

i = Pc
i , ε = 10−7;

Output: P∗i .
repeat

P∗i = Pk
i ;

(1) Construct Laplacian matrix
For given Pk

i of each face fi, construct the Laplacian matrix L of Pk
i

according to (7);
(2) Obtain segmented result

For given the Laplacian matrix of Pk
i , obtain the segmented result Pk+1

i
according to (8);

(3) Compute stopping criteria
For given the Pk

i and Pk+1
i , compute δ(Pk

i , Pk+1
i , fi) according to (9).

until k ≥ K or δ(Pk
i , Pk+1

i , fi) ≥ β;

2.4. Guided Normal Filtering with Adaptive Consistent Neighborhood

Through our two-stage scheme, the adaptive consistent neighborhoods that contain
geometric features as few as possible are constructed to provide a robust estimation of the
guidance normals for the noisy mesh. Then, the filtered face normals are obtained by the
joint bilateral filtering with the guidance. Finally, the vertex positions are reconstructed to
match the filtered face normals. The whole iterative framework is listed in Algorithm 2,
and the main steps are as follows. The corresponding pipeline of our method can be seen
in Figure 2.

(1) Compute face normals of the input mesh. A mesh of arbitrary topology without
any degenerate triangle is repesented as M ∈ R3, and the corresponding faces set and
vertices set are denoted as { fi : i = 1, 2, . . . , F} and {vi : i = 1, 2, . . . , V}, respectively.
Here, F and V are the number of faces and vertices in the M, respectively. For a face fi, its
outward unit normal can be calculated as:

ni = R
(
(vi2 − vi1)× (vi3 − vi1)

)
, (10)

whereR(·) = ·
‖·‖2

, and vi1 , vi2 , vi3 are the positions of the three vertices of the fi in a fixed
orientation, respectively.
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(2) Compute guidance normals. Through our two-stage scheme, the adaptive consis-
tent neighborhood is obtained for each face fi of the input noisy mesh. Then, we can use
the neighborhoods to compute the guidance normal gi at each face fi.

gi = R
(

∑
f j∈P∗i

Ajnj

)
, (11)

where Aj, nj are the area, the face normal of the face f j in the neighborhood P∗i . P∗i is the
adaptive consistent neighborhood of the face fi.

(3) Compute filtered normals. The robust estimation of the guidance for the true
normals of the noisy mesh is obtained by our adaptive consistent neighborhood, we can
use Equation (1) to compute filtered normals.

(4) Reconstruct vertex positions of the mesh. After obtaining the filtered face normal
field, we should update vertex positions of the mesh to match the filtered face normal
field. To this end, we use a classical vertex updating scheme presented by Sun et al. [14].
Specifically, we reposition vertex positions V by solving the following minimization problem:

min
V

{
∑
fk

∑
(vi ,vj)∈ fk

(n
′
k · (vi − vj))

2
}

, (12)

where n
′
k is the filtered face normal of fk. By using gradient descent to solve the problem (12),

we reconstruct vertex positions by the following iterative formula:

v
′
i = vi +

1
|Γ(i)| ∑

ft∈Γ(i)
n
′
t(n

′
t · (ct − vi)), (13)

where v
′
i is the updated vertex of vi. Γ(i) is the set of mesh faces that share a common mesh

vertex vi, and |Γ(i)| is the number of faces contained in Γ(i). ct is the centroid of ft. More
details can refer to the work [14].

Algorithm 2: Our mesh normal filtering framework.
Input: Min, L.
Initialization: l = 0; Ml = Min;
Output: Ml .
repeat

(1) Compute face normals of the mesh
For given Ml , compute {ni} for each face fi according to (10);

(2) Compute guidance normals
Compute {P∗i } by Algorithm 1 and {ni}, then compute {gi} for each face fi
according to (11);

(3) Compute filtered normals
For given {gi}, compute {n′i} for each face fi according to (1);

(4) Reconstruct vertex positions of the mesh
For given {n′i}, update Ml+1 according to (13);

until l ≥ L;

3. Experiment Results

The new method is implemented with C++ language. CGAL, Eigen and OpenGL
library are used to develop the software on Microsoft Visual Studio 2010. A group of CAD,
non-CAD and original models scanned by 3D scanning equipments are used to conduct
a set of experiments. All of the experiments are run on the same server with an Intel i7
1.8 GHz CPU and 16GB RAM. In order to analyze the performance of our new method,
five typical methods are chosen to conduct a group of comparisons, such as BNLF [15],
L0M [22], ROFI [17], CNLR [35], and GNLF [21].
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For all our experiments, ε, β, K, L are the same. Specifically, ε is a small positive number
to avoid zero division, which is empirically fixed as 10−7. β is a threshold for tuning the
segmented degree, which is empirically set as 0.6. K = 3 and L = 10 are the maximum
iteration numbers of segmentation and the face normal filtering method, respectively.

3.1. Qualitative Comparisons

Firstly, we conduct a group of experiments by using a Table model, which includes
narrow and smooth geometrical structures. As shown in Figure 3, Figure 3a is the noisy
mesh with 0.2 Gaussian noise. It obviously indicates that these five methods both perform
well for eliminating the noise. However, most of these methods blur sharp features in
varying degrees, except methods L0M and ours. Specifically, both methods BNLF and ROFI
cannot preserve sharp features, due to that these two methods are based on the bilateral
filter, which cannot distinguish sharp features from noise clearly; see Figure 3b,d. Since its
performance depends on the completeness of the training dataset, the learning-based
method CNLR blurs sharp features; see Figure 3e. Because it is short of the robustness to
mesh topology, method GNLF is failed to keep narrow structures; see Figure 3f. Although
method L0M can recover sharp features well, it produces staircase effects in smoothly
curved regions due to its high requirements of sparsity; see Figure 3c. On the contrary,
our method can preserve sharp features on narrow structures and recover smoothly curved
regions well; see Figure 3g.

(a) Noisy (b) BNLF (c) L0M (d) ROFI (e) CNLR (f) GNLF (g) Ours

Figure 3. Denoising results of Table model.

Figure 4 demonstrates the denoising results of Part and Block, which contain sharp
features on highly irregular sampled regions. The two models shown in Figure 4a are
the noisy meshes with 0.2 Gaussian noise. Although both methods BNLF and CNLR can
recover smooth features well, they inevitably blur sharp features; see Figure 4b,e. On the
contrary, although methods L0M and ROFI can preserve sharp features, they cannot recover
smoothly curved regions well. Specifically, both two methods usually produce staircase
effects in these regions; see Figure 4c,d. Method GNLF can recover smooth regions while
keeping most of sharp features well. However, it sometimes blurs corners because it often
lacks robustness to mesh topology nearing corner features; see Figure 4f. Compared to
these state-of-the-arts, our method can recover sharp features on highly irregular sampled
regions; see Figure 4g.

Figure 5 demonstrates denoising results of Girl, which is a non-CAD mesh with
multi-scale features. As we can see, Figure 5a is the noisy mesh with 0.2 Gaussian noise.
Method BNLF over-smooths small-scale features in the zoomed-in view areas; see Figure 5b.
Methods L0M and ROFI flatten those small-scale features while producing false edges
on smooth regions; see Figure 5c,d. Methods CNLR and GNLF can recover large-scale
features, but they also blur those small-scale features; see Figure 5e,f. Compared to these
methods, our method can remove noise effectively while keeping multi-scale features; see
Figure 5g.
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(a) Noisy (b) BNLF (c) L0M (d) ROFI (e) CNLR (f) GNLF (g) Ours

Figure 4. Denoising results of Part and Block models.

(a) Noisy (b) BNLF (c) L0M (d) ROFI (e) CNLR (f) GNLF (g) Ours

Figure 5. Denoising results of Girl model.

Figure 6 gives comparisons on Bunny containing fine details. As can be seen, Figure 6a
is the noisy mesh with 0.2 Gaussian noise. Methods BNLF, CNLR, and GNLF over-smooth
geometric details in varying degrees; see Figure 6b,e,f. Both methods L0M and ROFI suffer
the over-sharpened effects. Besides, method L0M also produces false edges in smooth
regions while method ROFI blurs the small-scale features; see Figure 6c,d. Compared to
the above methods, our method produces the visually best result with the most details
preserved; see Figure 6g.

(a) Noisy (b) BNLF (c) L0M (d) ROFI (e) CNLR (f) GNLF (g) Ours

Figure 6. Denoising results of Bunny model.
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Figure 7 demonstrates the comparison on a laser-scanned mesh with rich geometric
details. As can be seen, all the methods can remove noise effectively. Moreover, method
BNLF over-smooths the details; see Figure 7b. Although methods L0M, ROFI, CNLR,
and GNLF can recover those relatively large-scale geometric details, all of them blur the
small-scale details; see in Figure 7c–f. Specifically, methods L0M, ROFI, and GNLF also
cause over-sharpened effects. Compared to the above state-of-the-art methods, our method
can not only keep those relatively large-scale details well, but also preserves the most
small-scale details; see Figure 7g. These results demonstrate that our method outperforms
the compared methods in handling laser-scanned meshes.

(a) Noisy (b) BNLF (c) L0M (d) ROFI (e) CNLR (f) GNLF (g) Ours

Figure 7. Denoising results of a laser-scanned mesh.

Recently, a lot of triangulated meshes are obtained using consumer-grade depth
cameras, e.g., Microsoft Kinect. In Figure 8, we show the denoising results of David,
which is scanned by Kinect. As can be seen, all the methods can effectively remove noise
while preserving the geometric features well. Similarly, method L0M produces many
false edges in smoothly curved regions for its highest sparsity requirements; see Figure 8c.
However, according to the quantitative comparison results (MSAE) in the next subsection,
we can see that the errors of our method are the lowest when compared to the above
state-of-the-art methods. Thus, our method outperforms other compared methods in
handling meshes acquired by Kinect. In addition, we give more denoising results on
the raw data scanned by Kinect in Figure 9. As we can see, our method can consistently
produce satisfactory results.

(a) Noisy (b) BNLF (c) L0M (d) ROFI (e) CNLR (f) GNLF (g) Ours

Figure 8. Denoising results of David scanned by Kinect.
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(a) pyramid (b) cone (c) big-girl (d) boy (e) girl (f) david

Figure 9. Denoising results of Kinect-scanned models.

3.2. Quantitative Comparisons

In Section 3.1, the effectiveness of our new method has been verified by rendering
these 3D models, see Figures 3–9 . In this section, MSAE and Ev,2 are exploited to ana-
lyze the deviation between the denoised meshes and ground-truth [15,21], see Table 1,
Figures 10 and 11. Computing time is also collected to analyze the computational
intensity [41–43] of different methods, see Figure 12.

As shown in Table 1 and Figure 10, the MSAE of our method is the minimum one,
which means that the deviation between the face normals of denoised meshes and ground-
truth is minimal. It indicates that the adaptive consistent neighborhood exploited by our
method can effectively generate more accurate face normal field. In addition, the Ev,2 of
our method is lower than most of the others, see Figure 11. The Ev,2 of ROFI is bigger than
ours, but sharp edges may be generated in some small-scale smooth regions, see Figure 8d.

The complexity of an algorithm directly impacts the computing time of the method.
The new method is developed based on GNLF. In our method, adaptive consistent neigh-
borhood is exploited to compute guided face normal field. This procedure is computational
intensive. It increases the complexity of the method, so the computing time of our method
is longer than GNLF. However, the computing time of our method is not the longest one
when compared with other methods, see Figure 12.

Table 1. Quantitative evaluation results of the tested mesh denoising methods.

Mesh
MSAE(×10−3), Ev,2(×10−3); Time (in Seconds)

BNLF L0M ROFI CNLR GNLF Ours

Table 18.3, 2.45; 0.08 7.39, 2.14; 1.50 6.53, 4.21; 3.61 12.9, 2.02; 16.7 31.2, 3.49; 0.55 5.88, 1.03; 2.43
Part 6.54, 3.63; 0.06 9.38, 4.57; 1.66 10.7, 2.89; 3.14 5.73, 2.88; 16.8 8.15, 2.91; 0.64 4.08, 2.43; 2.06
Block 12.3, 3.35; 0.12 5.60, 2.36; 4.27 3.89, 3.27; 6.96 2.53, 2.42; 17.4 5.06, 1.91; 1.03 2.37, 1.78; 4.33
Child 37.1, 1.22; 0.57 49.7, 1.50; 34.3 47.1, 1.20; 53.8 31.1, 1.14; 23.1 42.7, 1.15; 10.1 19.8, 0.94; 22.6
Bunny 50.4, 5.12; 0.35 31.5, 2.70; 23.1 27.2, 2.02; 33.1 13.7, 1.24; 20.9 48.3, 5.18; 8.72 12.6, 1.15; 14.7
David 99.6, 7.34; 0.52 95.7, 6.95; 23.2 85.6, 5.86; 39.2 99.3, 6.25; 21.0 90.6, 6.46; 14.5 82.6, 6.32; 30.9

4. Discussion
4.1. Parameter Setting

Similar to existing methods, our method needs to tune several parameters to pro-
duce satisfactory results. The parameter θ is used to recognize sharp features from noise.
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Figure 10 shows the results of different θ with fixed other parameters. As can be seen that,
Figure 10a is the noisy mesh with 0.35 Gaussian noise. When the value of θ is too small
or too large, our method can blur sharp features; see Figure 10b,e. The reason is that our
method can recognize all the edges as features or non-features if the value of θ is too small
or too large. Besides, there is a range of θ values can be used to generate satisfactory results
with sharp features well preserved; see Figure 10c,d. In our experiments, we empirically
set θ in the range of [0.1π, 0.3π].

(a) Noisy (b) θ = 0.001π (c) θ = 0.1π (d) θ = 0.3π (e) θ = π

Figure 10. Denoising results for different θ (0.001π, 0.1π, 0.3π, π).

4.2. Robustness Test

In this subsection, we discuss the robustness of our method against different lev-
els of noise. As can be seen in Figure 11, Figure 11a–d are the noisy meshes with 0.2,
0.4, 0.6, and 0.8 Gaussian noise, respectively. When the mesh corrupted by small-scale
noise (standard deviation less than 0.4 mean edge length), our method can effectively
remove noise while preserving sharp features well; see Figure 11a,b. However, when the
level of noise increases, our method cannot preserve the original shape of the surface;
see Figure 11c,d.

We also perform two robustness tests on MSAE and Ev,2 for different mesh resolutions
in Figure 12. As can be seen, when the mesh resolution keeps decreasing, the values of
MSAE and Ev,2 do not change significantly. Therefore, our method is robust and reliable.

(a) 0.2 Gaussian noise (b) 0.4 Gaussian noise (c) 0.6 Gaussian noise (d) 0.8 Gaussian noise

Figure 11. Denoising results of Cube model.
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(a) (b)

Figure 12. (a) Error curves of MSAE for Joint model with five different resolutions. (b) Error curves of Ev,2 for Joint model
with five different resolutions.

5. Conclusions

The main novelty and findings of this paper are as follows. Firstly, we design a new
consistency measurement to explicitly select the coarse consistent neighborhood containing
the fewest geometric features. Then, we further present an improved technique based on
graph-cut to adaptively construct the more accurate neighborhood that does not contain any
geometric features. By using the constructed consistent neighborhoods, we can calculate
an accurate guided normal field. The adaptive consistent neighborhood of each face is built
by the proposed two-stage approach, which is the key part of this paper. By constructing
the adaptive consistent neighborhood of each face, we can neglect the influence from
features in the local neighborhood of the face. Based on the constructed adaptive consistent
neighborhoods, we apply the guided normal filtering method to restore the noisy normal
vector field. Then, vertex positions are reconstructed to match the filtered normal vector
field. Our mesh denoising method preserves geometric features well, and is robust against
complex topologies (e.g., narrow structures). We have compared our mesh denoising
method with the state-of-the-art methods visually and numerically, and discussed our
methods from various aspects.

Although our mesh denoising method performs better than the compared state-
of-the-art methods, the CPU cost of our method is intensive. Because our graph cut
algorithm is performed sequentially for each mesh face, it can potentially be parallelized
by using OpenMP or CUDA in future work. Moreover, we plan to extend our consistency
measurement and adaptive guided normal filtering method to point clouds.
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Abbreviations
The following abbreviations are used in this manuscript:

BNLF bilateral normal filtering
L0M L0 minimization
ROFI robust and high fidelity mesh denoising
CNLR cascaded normal regression
GNLF guided normal filtering
MSAE mean square angular error
Ev,2 L2 vertex-based error
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