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Abstract. Recovering high quality surfaces from noisy triangulated surfaces is a fundamental
important problem in geometry processing. Sharp features including edges and corners cannot be
well preserved in most existing denoising methods except the recent total variation (TV) and £g
regularization methods. However, these two methods have suffered producing staircase artifacts in
smooth regions. In this paper, we first introduce a second order regularization method for restor-
ing a surface normal vector field, and then propose a new vertex updating scheme to recover the
desired surface according to the restored surface normal field. The proposed model can preserve
sharp features and simultaneously suppress the staircase effects in smooth regions, which overcomes
the drawback of the first order models. In addition, the new vertex updating scheme can prevent
ambiguities introduced in existing vertex updating methods. Numerically, the proposed high order
model is solved by the augmented Lagrangian method with a dynamic weighting strategy. Intensive
numerical experiments on a variety of surfaces demonstrate the superiority of our method visually
and quantitatively.

Key words. triangulated surface denoising, total variation, high order regularization, aug-
mented Lagrangian method

AMS subject classifications. 65K10, 65D25, 65D18, 68U05

DOI. 10.1137/17TM115743X

1. Introduction. Triangulated surfaces are used in a variety of fields, such as
computer graphics [5], computer-aided design [2], computer vision [8], and many oth-
ers [32, 31, 33]. Triangulated surfaces are usually generated by some digital scanner
devices or triangulation algorithms [38]. However, even with high-fidelity scanners,
the scanning process inevitably produces noise due to local measurement errors [29].
Such noise affects the quality of surfaces and usually causes errors in downstream
geometry applications, such as surface reconstruction, segmentation, and visualiza-
tion [55]. Thus, how to effectively remove noise to recover high quality surfaces is
one of the most fundamental tasks in geometry processing. In practice, it is difficult
to distinguish noise and sharp features as they are of high frequency information.
Meanwhile, it is also important to preserve smooth regions such as quadratic patches.
Therefore, it is still quite challenging to remove noise while preserving sharp features
and smoothly curved regions.
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Filtering schemes, which can be roughly classified into two categories (isotropic
and anisotropic methods), are widely applied in surface denoising. The isotropic
methods [24, 53, 18, 42] are classical and simple, among which Laplacian smoothing
[24] is typical. Laplacian smoothing is the process of reducing the surface area. It
smoothes the surface to remove the noise without considering surface geometric fea-
tures. Thus, it, as well as other isotropic methods, suffers surface shrinkage and blurs
geometric features. Later, a variety of anisotropic methods [16, 19, 1, 25, 30, 67, 50]
were proposed to provide geometric features preservation. Compared to the isotropic
methods, the anisotropic methods are more effective for preserving geometric fea-
tures. However, when the noise level increases, the anisotropic methods usually fail
to produce satisfactory results. Especially, this drawback is more severe for surfaces
containing sharp features.

Variational methods are another kind of technique for triangulated surface de-
noising proposed recently. To keep the sharp features, the variational models use
sparsity regularization terms. Inspired by the great success of total variation (TV)
regularization in image processing [46], several researchers extended it to triangluated
surface denoising. The authors of [23] presented an analogue of TV by minimizing
the absolute value of Gauss curvature. Very recently, Zhang et al. proposed in [64]
a vectorial TV-based model on a face normal field over triangulated surfaces. This
method achieved impressive results for preserving sharp features. Another sparsity
regularization is ¢y quasi-norm. Indeed, He and Schaefer [27] extended ¢y minimiza-
tion [59] to triangulated surfaces for preserving sharp features. These methods achieve
impressive results for surfaces consisting of flat regions and sharp features, e.g., poly-
hedron surfaces. However, if a surface has smoothly curved regions, they tend to
flatten the smooth regions. The reason is the staircase effect of the sparsity regu-
larization in the gradient field. The staircase effect of TV in image processing has
been studied both from theoretical and experimental points in previous works; see
[12, 13, 39, 40, 41] and references therein. To overcome this disadvantage of TV,
high order PDEs [48, 39, 28, 3, 35] and combination methods of TV and high order
models [12, 63, 13, 39, 40, 28, 14, 45] have been used in the image processing com-
munity. However, to the best of our knowledge, very few of the high order models or
combinations are known over triangulated surfaces.

Wavelet frame methods have been successfully applied in image restoration [9, 10].
Recently, Dong et al. [22, 21, 20] extended the wavelet frame methods to triangu-
lated surfaces. Their tight wavelet frame systems are potentially effective in many
geometry applications, such as denoising and semisupervised clustering. Especially,
for surface denoising, Dong et al. [21] proposed multiscale representation of surfaces
using wavelet frames, which can achieve impressive denoising results for piecewise
smooth surfaces with multiscale details. Yang and Wang [61] proposed a wavelet
frame based variational model in [61]. Their method can effectively remove mixed
Gaussian and impulse noise for the ¢; + /5 fidelity term of their model. However, the
existing wavelet frame based methods have difficulty recovering surfaces consisting of
sharp features.

Among the methods mentioned above, there are some methods belonging to two-
stage methods, i.e., face normal filtering followed by updating vertices [54, 60, 49, 36,
51, 52, 67, 64, 65]. The difference between these two-stage methods is in their normal
filtering strategies, e.g., a mean and median normal filter was applied in [60, 51] to
adopted trimmed quadratic weights for averaging the normals, while Zhang et al. in
[64] used a TV based model to filter a face normal field. All of the normal filtering
strategies can either deal with smooth regions or sharp features well. Moreover, all of
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these two-stage methods use almost the same vertex updating model, which originated
from Taubin [54] and has a beautiful implementation by Sun et al. [51]. When the
noise level is low, the approach by Sun et al. [51] can achieve good results. However,
when the noise level increases, the recovered vertex positions deviate far from those
of the clean surface. In this situation, the method of Sun et al. [51] suffers producing
frequent foldovers. Moreover, large scale noise in random directions make the matter
even worse. This is due to the method [51] neglecting the orientations of triangle face
normals, which leads to the vertex updating ambiguity problem; see section 5 for an
explanation of this ambiguity.

As we can see, the aforementioned surface denoising schemes, including the fil-
tering, variational, and wavelet frame methods, can properly handle either smooth
regions or sharp features separately. However, it is still quite challenging to handle
simultaneously smooth regions and sharp features well. In this paper, we propose a
high order regularization model by introducing a new second order difference opera-
tor over triangulated surfaces. The proposed model with a well-designed weighting
function is applied to the surface face normal field, which has a crucial advantage in
handling surfaces consisting of both smooth regions and sharp features. It preserves
sharp features well and substantially suppresses the staircase effect. It is numerically
solved by the operator splitting and augmented Lagrangian method. The weighting
function enhances the sparsity of the proposed high order model and is implemented
by a dynamic weights strategy. After restoring the face normals, the surface vertices
should be updated to match the filtered face normals. Last but not least, a new
vertex updating method is presented. Compared to the traditional vertex updating
method [51], our new method can eliminate ambiguities and reconstruct much bet-
ter triangulated surfaces. To summarize, the contributions of the paper are listed as
follows:

e We introduce a new second order difference operator and its adjoint operator
in piecewise constant function space over triangulated surfaces. To the best of
our knowledge, this second order operator is the first defined over triangulated
surfaces.

e We introduce a novel normal filtering model using the second order regu-
larization with a well-designed weighting function, which can preserve sharp
features and simultaneously prevent the staircase effect in smooth regions.

e We propose a new vertex updating method to recover surface vertices. The
proposed method significantly reduces foldovers compared to the existing ver-
tex updating methods.

The rest of this paper is organized as follows. In section 2, we briefly review
TV based models in image processing and reweighted ¢; minimization. Section 3
provides the definitions of a new second order difference operator and two high order
regularization models in piecewise constant function spaces. The differences of this
second order operator and a Laplace-like operator are discussed at the end of section 3.
In section 4, we present a high order regularization normal filtering model with a well-
designed weighting function. An augmented Lagrangian method is applied to solve
the variational model with a dynamic weights strategy. In section 5, a new vertex
updating method is introduced for recovering the vertex positions with respect to the
filtered face normals. Our two-stage denoising method is discussed and compared to
typical existing methods both qualitatively and quantitatively in section 6. Section 7
concludes the paper.
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2. TV based models and reweighted ¢; minimization. In this section,
we present TV based models and reweighted ¢; minimization, since they are closely
related to our approach.

2.1. TV, vectorial TV, and high order models for images. Since the
pioneering work of Rudin, Osher, and Fatemi [46], TV has been proven very successful
in image processing for its excellent edge-preserving property [46, 39, 40, 35]. The
TV denoising model (ROF) aims at solving

1) min [ 1Val+ 5 [ =1

where f is an observed noisy image, fQ |Vu| is the TV regularization, and « is a
positive fidelity parameter. For -channel images u,f : Q@ — R”, where u =
(u1,ug,...,un) and £ = (f1, fo,..., for), the model (1) can be naturally extended

to its vectorial version as follows:
1

N 3
2 min w;|? & / u-—f|%
@ u/g(;|V|>+2Q| |
This model can be used for multispectral image processing with a special case 91 = 3
for color image processing. The regularization of model (2), referred to as vectorial
TV, has been discussed in [47, 4, 15, 7]. Both of the objective functionals are coercive,
proper, continuous, and strictly convex. Thus, problems (1) and (2) have, respectively,
a unique minimizer.

A well-known drawback of the above TV and vectorial TV models is the staircase
effect [12, 13, 39, 40]. To overcome this, high order models such as the Lysaker—
Lundervold-Tai (LLT) model [39] and the total generalized variation (TGV) model
[6] have been studied [48, 39, 28, 3, 6]. The idea is essentially to introduce high
order derivatives to the energy regularization. High order models in general perform
well in recovering smooth regions, but they cannot compete with TV in dealing with
discontinuous edges. A natural solution is to combine TV and high order models
[12, 63, 13, 39, 40, 28, 14, 45]. For examples, Lysaker and Tai [40] used a convex
combination of TV with LLT [39]. In [13], Chan, Marquina, and Mulet presented a
model combining a TV term with a weighted Laplacian term to reduce the staircase
effect while preserving sharp edges. A model using infimal-convolution of the TV and
high order term was proposed by Chambolle and Lions in [12], in which the TV term
was used to keep sharp edges while the high order term preserves smooth regions.
The key to these methods is to balance the contribution of the TV and high order
term. The balance is usually implemented by a weighting parameter or function,
which needs to be tuned carefully.

Almost all these variational models, after discretization over image pixel grids,
penalize the sparsity of various orders of differences of the image by ¢; related penal-
ization functions.

2.2. Reweighted ¢; minimization. The reweighted ¢, minimization was first
presented by Candes, Wakin, and Boyd in [11] to enhance the sparsity in sparse
signal recovery. It outperforms ¢; minimization in situations where substantially
fewer measurements are used to recover a signal.

The key of the reweighted ¢; minimization is to solve a sequence of weighted ¢;
minimization problems,

(3) 2™ = arg min |[W®gz||; st. Az =0,
zeR™
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where W) = diag(w¥, ..., wF) is updated according to 2(*~). Although there are a
variety of reweighted ¢; algorithms proposed to update the weights [11, 56, 66], as a
rough rule of thumb the weights should be inversely proportional to signal magnitudes
[11]. For example, the reweighted method proposed by Candés, Wakin, and Boyd in
[11] is as follows:

& 1

wi =——— i=1,...,n fore>0.
|z | +e

3. Discrete high order regularization models in piecewise constant func-
tion spaces over triangulated surfaces. In this section, we introduce some no-
tation followed by definitions of piecewise constant function spaces and difference
operators over triangulated surfaces. The discrete high order models in piecewise
constant spaces are presented and discussed.

3.1. Notation. Let M be a compact triangulated surface of arbitrary topology
with no degenerate triangles in R3. The set of vertices, edges, and triangles of M
are denoted as {v; : i = 0,1,...,V =1}, {e; : ¢ = 0,1,...,E—1}, and {r; : i =
0,1,...,T — 1}, respectively. Here V, E, and T are the numbers of vertices, edges,
and triangles of M, respectively. If v is an endpoint of an edge e, then we write it as
v < e. Similarly, e < 7 denotes that e is an edge of a triangle 7; v < 7 denotes that v
is a vertex of a triangle 7.

Denote the 1-ring of the triangle 7; as Dj(7;), which is the set of the triangles
sharing some common edges with 7; indicated as green triangles in Figure 1(a). Let
Bi(r) ={ljs : 1 =0,1,...,T —1;j = 0,1,2} be the set of lines connecting the
barycenter and vertices of 7;, where j counterclockwise marks the vertex contained
in 7;. Namely, {; -, is the line connecting the barycenter of 7; and the vertex marked
as j in 7;. Let By(7;) be the set of lines connecting vertices of 7; and barycenters
of triangles in D;(7;), indicated as blue lines in Figure 1(b). Write the 1-disk of the
vertex v; as M1 (v;) denoting the indices of triangles containing v;, indicated as gray
triangles in Figure 1(c). We write the 1-neighborhood of vertex v; as Ni(v;), which
is the set of vertices connecting to v;, indicated as orange vertices in Figure 1(d).

\@7 §

(a) () () (d)

Fia. 1. The illustration of D1(7;), B1(7i), B2(7i), M1(v;), and N1(v;). The elements contained
in D1(7;), B1(74), B2(7i), M1(v;), and Ni(v;) are plotted in green, cyan, blue, gray, and orange,
respectively. (a) D1i(7;) is the 1-ring of the triangle T;, which refers to three triangles; (b) B1(7;) is
the set of lines connecting the barycenter and vertices of T;, which refers to three lines, and Ba(7;)
is the set of lines connecting vertices of T; and barycenters of triangles contained in D1 (7;), which
refers to siz lines; (¢) Mi(v;) is the 1-disk of the vertex v;, which refers to siz triangles; (d) Ni(v;)
is the 1-neighborhood of v;, which refers to siz vertices. (Figure is in color online.)
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We further introduce the relative orientation of an edge e to a triangle 7, which
is denoted by sgn(e, 7), as follows. First, we assume that all triangles are with coun-
terclockwise orientation and all edges are with randomly chosen fixed orientations.
For an edge e < 7, if the orientation of e is consistent with the orientation of 7, then
sgn(e, 7) = 1; otherwise, sgn(e,7) = —1.

3.2. Piecewise constant function spaces and operators. To describe the
piecewise constant data field, we present the concept of piecewise constant func-
tion space. Compared to piecewise linear function space which is suitable to deal
with vertex-based problems, we find that, for feature preserving geometry processing
[64, 37], the piecewise constant function space is more suitable, which is related to a
piecewise constant finite element method in numerical PDE. For normal-based trian-
gulated surface denoising, the piecewise linear function space requires the input to be
vertex normals, while the input of the piecewise constant function space is face nor-
mals. The vertex normals are averaged from face normals. The second order geometry
information of this smoothed vertex normal field is much less sparse than that of the
face normal field. Thus, it is more appropriate to discretize our high order regulariza-
tion model in the piecewise constant function space for preserving sharp features. We
should point out that, over triangulated surfaces, the second order difference operator
is newly defined in this paper.

We denote the space Vi = RT, which is isomorphic to the piecewise constant
function space over M. w = (ug,u1,...,ur—1) € Vs means that the value of u
restricted on the triangle 7 is w,, which is written as u|. sometimes. The inner
product and norm in Vj; are as follows:

(4) (ulau2)VM = ZU1|7—U2‘7—S7—, HU’”VM =V (u’u)VM vulaUQau € Vi,
T

where s, is the area of triangle 7. For any u € V), the jump of u over an edge e is

>_ul-sgn(e, 7), e OM,
5) e = { e
0, eC oM.

It is then natural to define the first order difference operator [64, 37] by
(6) 0:Var = Quryu— du, dule =[ule Ve for u € Vyy,

where Q); = R¥ is the range of 5. The @, space is equipped with the following inner
product and norm:

(7) (@' ¢%)aun = Y d'led’llen(e),  llallow = /(4 D

for ¢, ¢%,q € Qar, where len(e) is the length of the edge e.

It is straightforward to derive the adjoint operator of &, namely §* : Qp —
Vi, q — 6*q, using the above inner products in Vjy and Qp;. For q¢ € Qpy, 0%q is
given by

(8) (6%q)|~ :i Z qlesgn(e, 7)len(e) V7.

eZ OM
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F1G. 2. The illustration of [[u]]; over the line I plotted in cyan in triangle T with the barycenter
plotted in red. (Figure is in color online.)

In the following section, we define a second order difference operator which will
be used to construct our high order regularization models. Let [ be a line connecting
the barycenter and one vertex of the triangle 7. The two edges of triangle 7, which
share the common vertex of [, are denoted as et and e, respectively. The two
triangles, contained in Di(7;) and sharing these two edges, are denoted as 7+ and
7~ , respectively. All aforementioned descriptions are indicated in Figure 2. Then, we
define [[u]]; over the line [ in 7 as

[[u]], = [ule+sgn(e™, 7F) + [u].—sgn(e™,77)
= ((ungn(e+,T) +upesgn(et, 77))sgn(e™, 7‘+))
9) + ((ufsgn(e*, T) +u,—sgn(e , 7 ))sgn(e, ’7'7))
= (tr+ —ur) + (ur- —uy)
= Ur+ + Ur— — 2Ur,

which is written as [[u]], . sometimes. For simplicity, with Neumann boundary con-
dition, we define, for any u € V),

(10)

() = Ut + U — 2uy, et and e” ¢ OM,
b= 0, et ore” C OM.

From (9), we can obviously see that the definition of [[u]]; is invariant under the choice
of the orientation of edge e.

Then, the second order difference operator is defined by
(11) 6% : Var = Paryu e 8%u, (6%0)|- = ([[u]liy.,, [[W]]ir . [u]lis.) V7, for u € Vi,

\T

where Py; = RT x RT x RT is the range of 62. The Py, space is equipped with the
following inner product and norm:

(12) (plva)PM:Z Z p1|lp2|llen(l)’ Ipllpy = V(. 0) Pus

T leBy(T)

for p',p?,p € Py, where len(l) is the length of line I.
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LEMMA 3.1. The adjoint operator of 62, that (62)* : Pyy — Var,p — (62)*p, has
the following form:

(13) ((6%)*p) (thlen — Z 2p|llen(l)> v, for p € Py

St 1EBy(7), 1€By(7),
et and e=goM et and e=goM

Proof. As the definition of adjoint operator, we have

(14) <62u’p>PJW = <u’ (52)*p>VM'

By using the inner products (12) and (4) in Py and Vs, (14) can be reformulated as

(15) Z Z u]]iplilen(l) ZUT D)|rSr.

T leB1(T)

By using (10), the left-hand side of (15) is actually

Y (ulliplden() =) (Z(uﬁ + Uy — 2u7)p|zlen(l))

T l€B1(T) T l€EB1(7),
et and e~ oM

:Z (Zquhlen ZQquhlen )

T 1€By(7), 1eBy(7),
et and e—¢goM et and e goM
= E uT( E pliden(l) — E 2p|llen(l)>.
1EBy (), 1eBy(7),

et and e~ goM et and e~ goM

Therefore, we have

ZUT(thlen 22p|llen ) ZUT *p)|rsr).

1€By (), 1€By (1),
et and e~ goM et and e~ goM

Then, the assertion follows immediately. ]

To handle vectorial data, we extend the above concepts to vectorial cases. Two
vectorial spaces Vs, Py are as follows:

Vy=Vux---xVy, Py=PyXx--XPy
—_——— —_——
n N

for M-channel data. The inner products and norms in Vj; and P, are as follows:

(ulauz)VM = Z (uzlaulz)VMv lullvy, = v (uvu)VMvul,uzau €V,

1<i<n

®P)ey = Y. L0})rys PPy =V (P, PPy, P P’ P € Pur.
1<i<M

We mention that du,d?u and their adjoint operators can be computed channel by
channel.
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3.3. Two discrete high order models over triangulated surfaces. Assume
f € Vs to be an observed noisy scalar field on M. A high order regularization model
reads

ueVar

(16) min {Eho(u) = Rio(6%u) + % llu — f||%/M }a

where

Rio (0%u) Z Z u]]|len(7) Z |[[u]]: [len(l)
!

T 1€B1(T)

is the second order variation of u, and « is a positive fidelity parameter. The mini-
mization problem (16) has a unique minimizer under the assumption of no degenerate
triangles on M.

Our second discrete high order regularization model is for vector field denoising
over surfaces. Suppose f = (f1, fa,..., fo) be an observed noisy vector field. The
vectorial version of (16) reads

ueVy

a7) nin { Buo() = Rona(6%u) + 5 u 113, }

where

Runo(8*w) =3 >~ <Z| ui] ||2) len(! Z(iﬂ[uMF) len(l)

T 1€B(T)

is the vectorial high order seminorm.

3.4. A discussion on the second order difference and Laplace-like op-
erator. The Laplacian is the mostly frequently used high order operator in geometry
processing. Of course, it can also be used to construct a high order regularization
model. In this subsection, we discuss differences between the second order difference
operator (11) and Laplace-like operator in piecewise constant function space over tri-
angulated surfaces. The high order regularization models using these two high order
operators are also compared.

For clarity, we first give the discretization of a Laplace-like operator in piecewise
constant function space. By using the first order difference operator (6) and its adjoint
operator (8), the Laplace-like operator 6*§ : Vay — Vi, u — §*0u, can be derived as

(18) (6*6u)|, = 1 > (ur —ug)len(e) V.
St e<7,7TMNT;=e€,

e OM

For a noisy scalar field, an ¢;-norm Laplacian-like regularization model reads

(19) min {Elap(u) = Rjap(6*u) + % [l — f||%/M }7

u€Vy

where the regularization term is defined as

Riap (0% ) Z| 5*6u)| ;|57
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As we can see, discretizations of the second order operator (11) and Laplace-like
operator (18) are totally different. Our second order operator can be seen as a set of
second order central differences defined over [ along three different directions in one
triangle. For uniformly sampled triangulated surfaces, the second order regularization
term of high order model (16) is an analogue of the regularization term that depicts

/ tta] + [ty |y
Q

in a two-dimensional (2D) domain, while the Laplacian-like regularization term of
model (19) can be seen as an analogue to

/ [tge + Uyy|dzdy.
Q

The regularization term using second order operator (11) can be computed separately
in different directions, while that using the Laplace-like operator (18) cannot. Com-
pared to the ¢1-norm Laplacian-like model (19), the second order regularization model
(16) is more effective for recovering sharp signals over triangulated surfaces; see the
comparison of vectorial implementations of these two models in Figure 13. Moreover,
the second order regularization model overcomes the staircase effect introduced by
first order models.

4. Normal filtering using high order model with dynamic weights. The
recent TV [64] and £y [27] based minimization methods use the concept of sparsity
of first order information to remove noise from triangulated surfaces. These methods
preserve sharp features well, but suffer from the staircase effect in smooth regions
inevitably. In this section, a high order normal filtering model with dynamic weighs
is proposed for preserving sharp features and removing the staircase effect in smooth
regions simultaneously. The dynamic weights are applied in the proposed model to
significantly improve effectiveness for preserving sharp features.

4.1. High order normal filtering model with dynamic weights. For a
given noisy surface M, we write the face normals as N**. To remove noise in N"
through our vectorial high order model (17) with multiple spherical constraints, we
propose the following variational model:

. «@ in||?
(20) NHGHCI'lN {E(N) = thow((SQN) + 9 ||N -N ||VM }’

where
On = {N € Vi : [N, || = 1 vr},
: ;
Rynow (0°N) = Zun(Z(éQNih)z) len(l).
l i=1

Note that Vj; denotes 3-channel Vj; here. The dynamic weight w; on each [ of
triangle is defined as

(21) w; = exp(— [N+ + N,- — 2N, ||*).

See Figure 2 for the relations of I, 77, 77, and 7 in (21). This function is expected
to be large when the norm of second order difference defined on [ is small, and vice
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versa. Thus, it can offer large weights to smooth regions (smoothly curved regions and
flat regions), and small weights to sharp features, and therefore smoothes nonfeatures
regions and preserves sharp features.

For most surfaces, the proposed vectorial high order regularization model (17)
can achieve good denoising results. However, in rare cases, where the noise level is
increased, the proposed model (17) may smooth some sharp features a little. Thus, we
use the dynamic weights, updated with respect to the face normals in each iteration,
to enhance the sparsity of our high order model for improving sharp features recon-
struction. The dynamic weights scheme is inspired by Candes, Wakin, and Boyd in
[11]. These dynamic weights penalize smooth regions (smoothly curved regions and
flat regions) more than sharp features, which can be applied to achieve the lower-
than-¢;-sparsity effect. In general, the combination of the high order model and the
dynamic weights is able to preserve sharp features well and at the same time recover
smooth regions without staircase effects.

4.2. Augmented Lagrangian method for solving the high order normal
filtering model. It is challenging to solve the normal filtering model (20) due to
the nondifferentiability and nonlinear constraints. Recently, the variable splitting
and augmented Lagrangian method (ALM) have attracted intensive attention for
their efficiency in many ¢; related optimization problems [43, 44, 58]. Hence, we
introduce an auxiliary variable and use ALM to handle the regularization term of
(20). Moreover, in each iteration of ALM, the weight (21) is updated dynamically.

We first introduce a new variable p € Pjs and rewrite the problem (20) as

o in |2

i RV ow - N — N'LTL N

(22) eI, { how(P) + 5 | 13, + oo >}
s.t. P = 62N’

where

0, Ne(ln,
UCN(N):{ 400, N¢C§

Accordingly, we define the following augmented Lagrangian function:
o in||2

(23) L(N,p; \p) :thOW(p)+§ ||N_N ||VM +oen(N)

23

r

+ ()‘pﬂ p— 52N)PM + Ep”p - 52N”%’Mﬂ

where Ay is a Lagrange multiplier and rp is a positive real number. This primal

variables update procedure can be separated into two subproblems:

e The N-sub problem: given p
! in r
(24) gnin SIN=N"[, + (g, 0*N)p,, + 2o~ *N|s,, +00, (N)

e The p-sub problem: given N

. T
(25) i Ruow(p) + (s )y, + 2lip = N,
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The N-sub problem is a quadratic minimization with orthogonality constraints. It
is challenging to find the exact solution of the N-sub problem due to the nonlinear and
nonconvex constraints. Although some iterative methods [26, 57, 34] were proposed to
efficiently approximate the exact solution of this type of problem, it is not possible to
get the exact solution in finite precision arithmetic. Moreover, it is never practical to
iterate for a long time. Fortunately, due to error forgetting and cancellation properties
of ALM for the ¢; minimization problem [62], the suboptimization problem (24) does
not have to be solved very accurately. Here we adopt an approximate strategy to
balance the precision and computational efficiency. We first ignore o¢y (N) and solve
a quadratic programming and then project the minimizer onto a unit sphere. The
quadratic problem (without constraints) has the first order optimality condition

(26) rp((82)*6°N) 4 aN = r5((62)*p) + (62)*Ap + aN".

This equation can be reformulated into a sparse and positive semidefinite linear sys-
tem, which can be solved by various well-developed numerical packages. Here we use
the conjugate gradient (CG) method to solve the problem. The maximum number of
iterations and the tolerance threshold of CG method are empirically set to be 10 and
le-2, respectively. The iteration procedure terminates when one of these two stopping
criteria is satisfied. Then, we directly project the solution onto the unit sphere.
Next, we solve the p-sub problem (25). By (12), this problem can be written as

@) win} wlpilend) + 3O polen(d) + 3 Blp — (*N)|iPlen().
l l l

The problem (27) is decoupled and can be solved line-by-line. For each line I connect-
ing the barycenter and one vertex of one triangle, we need to solve

) T
n:)llnwl\pﬂ + (Apsp1) + ?p|pl - (52N)|l‘2’

which has a closed form solution

(28) Py = { (1— D& Il

>
07 |£l| é

gs[8

L

)
L
r

Ap

T'p

€=0°N-—

In summary, the algorithm of high order normal filtering model (20) is given in
Algorithm 1. Based on the variable splitting and ALM, this algorithm solves the
nondifferentiability problem with nonconvex constraints by iterating several simple
operations. We should point out that, in the conventional reweighted ¢; minimization
(3), the minimization problem with fixed weights is usually solved exactly. Therefore,
the reweighted strategy is time-consuming. In contrast, Algorithm 1 updates the
weights in each iteration. It can be regarded as an inexact but more efficient version
of the conventional reweighted minimization algorithm. Although we currently can-
not give a rigorous proof of convergence for Algorithm 1, our numerical experiments
strongly validate it in practice. A theoretical analysis of this algorithm is worthy of
future research.
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Algorithm 1 Augmented Lagrangian Method for High Order Normal Filtering with
Dynamic Weights.
1: Initialization: \) =0, N"!' =0, P~! =0, k=0, K =100, ¢ = le — 4
2: do
3 1. Compute N* from (26) for fixed (A%, p*~!); Normalize N*
4 2. Compute p* from (28) for fixed (A5, N¥)
5: 3. Update Lagrange multiplier /\f,“'1 = /\f, + rp(pk — 62NF)
6
7
8

4. Update each weight w; through (21) with respect to N*
: while |[N* — N*1|y,, <eork>K
: return N¥

5. Ambiguity free vertex updating method. After restoring the face normal
field by Algorithm 1, the positions of vertices need to be reconstructed to match the
updated face normals. As mentioned in section 1, all of the existing two-stage methods
[54, 60, 49, 36, 51, 52, 67, 64, 65] use the same vertex updating model,

(29) rnvlnz Z (N - (v; — vj))Q,

T (viv)ET

where s is the area and N, is the filtered normal of 7. The gradient descent method is
used to minimize this optimization problem, where its initialization is the restored face
normal field. This optimization problem is to penalize the nonorthogonality between
the filtered face normal and the three edges at each face over the surface. However,
when a surface is corrupted by noise in random directions, the vertex updating method
[61] usually produces foldings, even with the exact (ground truth) face normals. In
addition, large scale noise makes this phenomenon even worse; see the second column
of Figure 3. The reason is that the model (29) only penalizes the nonorthogonality and
cannot distinguish between —IN; and N ;. Thus, the model neglects the orientations of
triangle face normals and leads to updating ambiguities. In other words, a vertex v; of
triangle 7 may be updated along the direction —IN; instead of N... These trianglewise
orientation ambiguities cause inconsistent normal vectors crossing different triangles.

To address the orientation ambiguity problem, we propose a new vertex updating
method, which reconstructs the surface from a given normal vector field by solving
the following minimization problem:

o nﬂn{E(”) =S eN () _”m'Q}’

T:('qu,Uj,’Uk) I

where (v;, v, vg) are vertices of T with counterclockwise order, v*" is the noisy surface,
and 7 is a small positive parameter. The first term of (30) is used to solve the ori-
entation ambiguity problem. This term not only considers the orthogonality between
the triangle face and its corresponding normal direction, but also takes into account
the orientation of the face. Thus, compared to (29), the energy of model (30) poses
no ambiguity. The second term of (30) is a fidelity term.

The partial derivatives of the energy E(v) with respect to v; is as follows:
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Vo, E(v)
:_ZS ( N, x (vg — vj) N, x (vk — vj) N, x (vg — vj)
e MI(J) [(v; —wi) x (v —wi)[|  [[(ve —v5) X (i —v5)[|  [[(vi —v&) % (v — i)l

T = (vi, V5, V)
N - [(vj = vi) X (i — )] [(v; — i) X (v — Vi) X (v — vy)]
[(v; — i) x (vk — i)
N [(oe —v5) X (Vi —v5)] [(vk — v5) X (vi — ;) X (v — v5)]
l[(vx —v5) x (vi —v)|®
_ N- - (v = vk) X (v = )] [(vi = 0k) X (5 — vk) X (vk = 05)] I
[[(vi — i) X (v; —vk)||3 > v -

Using the two facts that

(v = vi) X (v = vi)[| = (v — v3) X (vi = v3)[| = [[(vi — vk) X (vj — vi)|| = 25,

(v = vs) X (v = 0i) _ (0 = vg) X (0 = v) _ (0= we) X (U = v) _

25, 28, 25,

where S, and N, are updating area and normal of triangle T according to the updated
vertices v, we arrive at

> 350 (N7 - No N> = No) x (v = vj)

(31)  V.E(v) = 5

T € My(v;),
T = (vi,vj, vk)

+ n(v; — v").

With the given gradient information (31) and the vertex positions of the initial
noisy surface, many popular optimization techniques, such as accelerated gradient
descent and quasi-Newton methods, can be used to solve our model (30). In this
paper, we choose the Broyden—Fletcher—Goldfarb—Shanno (BFGS) algorithm [17], one
of the most commonly used methods for solving nonconstrained problems like (30).
In each iteration, BFGS algorithm uses only the energy and gradient evaluated at the
current and previous iterations.

We compare our vertex updating method (30) with the method proposed by
Sun et al. [51] in Figures 3 and 4. Both methods have two inputs: face normals
(N,) and vertex positions of the noisy surface (v™"). The accuracy of the input
normals will influence the final reconstructed result. In Figure 3, we use normals of the
clean surfaces and vertex positions of the noisy surfaces as inputs. This configuration
can eliminate the influence produced by possible incorrect face normals, and show
the essential difference of these two vertex updating methods more clearly. More
practically, we then use filtered normals produced by our normal filtering, Algorithm 1,
and vertex positions of the noisy surfaces as inputs in Figure 4. As we can see in these
two figures, our method (30) can greatly reduce foldovers and help to improve the
quality of the reconstructed surfaces, compared to the method proposed by Sun et al.
[51]. We should point out that if the normal filtering step provides an exactly correct
normal vector field, our vertex updating method can perfectly recover the surface
without any foldovers, whereas the method proposed by Sun et al. [51] still produces
lots of foldovers; see Figure 3 for an example. When the noise level is high, the
previous normal filtering step may produce some incorrect normals. Although these
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Fic. 3. Comparisons of vertexr updating methods (the method (29) proposed by Sun et al. [51]
and ours (30)). The first column shows the triangulated surfaces corrupted by Gaussian noise with
standard deviation o = 0.4 mean edge length and o = 0.3 mean edge length in random directions.
The second and third columns are results produced by [51] and ours, respectively. The foldovers are
highlighted in red. The last column illustrates the energy evolution curves via iteration numbers.
(Figure is in color online.)

Noisy Sun Ours 02
= —Sun
2 —Ours
W 0.15
+
:L 0.1
LR
éo.os
)
f =
w
0 10 20 30 40 50
Foldovers: 29 Foldovers: 0 Iterations
0.15
~ —Sun
2 ——Ours
w 0.1
+
I —
! B
; =005
3
)
f=
w o
0 10 20 30 40 50
Foldovers: 811 Foldovers: 13 Iterations

Fi1c. 4. Comparisons of vertex updating methods (the method (29) proposed by Sun et al. [51]
and ours (30)). The first column shows the triangulated surfaces corrupted by Gaussian noise with
standard deviation o = 0.2 mean edge length and o = 0.2 mean edge length in random directions.
The second and third columns are results produced by [51] and ours, respectively. The foldovers are
highlighted in red. The last column illustrates the energy evolution curves via iteration numbers.
(Figure is in color online.)

incorrect normals may cause foldovers in our vertex updating method, the number of
foldovers produced by our method is much smaller than the number of the method
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Fi1G. 5. The clean surfaces tested in section 6. From top left to bottom right: Block, Fandisk,
Part, Joint, Gargoyle, Maz-Planck, and Doubletorus.

proposed by Sun et al. [51] (see the last row of Figure 4). From the energy evolution
curves in Figure 3, we observe that both methods are convergent and the iteration
numbers of these two are close. However, the results produced by [51] suffer from
severe foldovers and are inaccurate, while our method produces much better results.

6. Numerical experiments. We verify the effectiveness of our two-stage de-
noising method on a variety of triangulated surfaces with either synthetic or raw noise.
The synthetic noise added in random directions is produced by a zero-mean Gaussian
function with standard deviation o proportional to the mean edge length of the clean
surface. The clean surfaces tested in this section are listed in Figure 5.

To verify the robustness of our denoising method to the quality of surface triangles,
we use two quantities as in [37]. These quantities are defined as follows:

polobal _ Min- area of T

max, area of 7’

min.~, length of e

Dlocal — min )
T maXe<, length of e

D9lobal stands for the smallest largest triangle area ratio used for globally describing
the distribution of triangles. D'*°® denotes the smallest one of ratios of shortest and
longest edge lengths in triangles, which can be used to locally measure the quality
of triangles. The information of the clean surfaces are listed in Table 1. Although
several surfaces including Gargoyle, Max-Planck, and Embossment do not feature
very regular meshes as D9 and D' indicated in Table 1, our method can still
effectively handle all of these surfaces and produce satisfactory results.
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TABLE 1
Information of surfaces tested in this paper.

Surface F#vertices | Ftriangles Dglobal Dtocal
Block 8771 17500 0.066312 0.369025
Fandisk 6475 12946 0.0202721 0.333103
Part 4261 8530 0.0596278 0.235325
Joint 5636 11276 0.000489636 | 0.0508141
Gargoyle 25002 50000 0.000194802 | 0.0814815
Max-Planck 30942 61880 9.28547e-006 | 0.0135542
Rabbit 37394 73679 0.0805432 0.0991931
Angel 24566 72690 0.041708 0.0824533
Shell 58354 174031 0.00645787 0.106432
Embossment 65988 195095 0.00735766 0.0106189
Doubletorus 2686 5376 0.00439037 0.109461

For fair comparisons, we have implemented all of the algorithms tested in this
paper using C++ and run all examples on a notebook with a Intel dual core 2.10
GHz processor and 8GB RAM. All of the surfaces are rendered in flat-shading model
to show faceting effect. Our algorithm is compared qualitatively and quantitatively
to state-of-art methods, respectively. We also discuss our algorithm from various
aspects, including influences of parameters and algorithm convergence.

6.1. Qualitative comparisons. In this subsection, we compare our surface de-
noising method w-HO with other methods including the TV normal filtering method
[64], ¢p minimization [27], and bilateral weighting Laplacian optimization [67], ab-
breviated as TV, ¢y and bw-Laplacian, respectively. For all of these methods, we
carefully tuned the parameters to get the visually best denoising results.

In Figure 6, we compare the results for surfaces containing both sharp features
(including sharp edges and corners) and smooth regions (including smoothly curved
regions and flat regions). As we can see, bw-Laplacian keeps smooth regions well but
blurs sharp features, while our w-HO method, TV, and ¢, preserve most sharp features
well. Furthermore, TV and £y both suffer from staircase effects in smoothly curved
regions indicated in Figures 6(c) and (d), and this phenomenon is extremely serious
for £y, which produces false edges in the first and last row of (d) of Figure 6. However,
our w-HO method does not produce the staircase effect while preserving sharp features
well. As we know, both sharp features and noise belong to high frequency information.
The bw-Laplacian cannot distinguish them strictly, especially for small scale features.
Thus, it may treat some features as noise and blur them. In addition, as stated in
compressed sensing, both the ¢y norm and ¢; norm have sparse property, which can be
used for preserving sharp features. However, as £y and TV use low order information
of surfaces, they tend to produce staircase effects in smooth regions, especially for
£y for its high sparsity requirement. Consequently, the compared three methods can
deal either with smooth regions or sharp features well, but not both. In contrast, our
w-HO method can suppress the staircase effects in smooth regions and simultaneously
preserve sharp features. Overall, for CAD-like surfaces, visual comparisons in Figure 6
show that our w-HO method is noticeably better than all of the other three methods
in terms of smooth regions and sharp features recovery.

Figure 7 shows results of surfaces with fine features. As can be seen, TV and
lo tend to flatten some details, and ¢y performs even worse. Our w-HO method
and bw-Laplacian both can generate visually better denoising results. However, from
numerical metrics (which will be introduced in subsection 6.2), we observe that errors
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(a) Noisy (b) w-HO (d) 4o (e) bw-Laplacian

Fic. 6. Denoising results of Block, Fandisk, Part, and Joint (corrupted by Gaussian noise,
standard deviation = 0.15 mean edge length). From left to right: input noisy surfaces, denoising
results produced by our proposed w-HO method, TV method [64], Lo minimization [27], and bilateral
weighting Laplacian method [67], respectively.

of our method are always lower than those of bw-Laplacian. This demonstrates that
our method is better than bw-laplacian. In general, for non-CAD surfaces, our w-HO
method can also yield satisfactory results containing more details than other methods.

To further demonstrate the validity of our w-HO method, we test it on real
scanned surfaces; see Figure 8. We can see that our method can yield very good
denoising results preserving most features well.

2. Quantitative comparisons. From the above comparisons, we find that
our w-HO method generates visually better results than those compared methods. In
this subsection, we further compare them quantitatively.

We use two error metrics [51, 52, 67] to measure the deviation of the denoised
surface from the clean one, which are defined as followed:

e Mean square angular error (MSAE):

MSAE = average(Z(N ,N)),

where Z(N',N) is the square angle between the normal of the denoising result
and the clean surface, average(Z(IN',IN)) is the square angle averaged over
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(a) Noisy (b) w-HO (d) Lo (e) bw-Laplacian

F1c. 7. Denoising results of Gargoyle (corrupted by Gaussian noise, standard deviation = 0.25
mean edge length) and Maz-Planck (corrupted by Gaussian noise, standard deviation = 0.2 mean
edge length). From left to right: input noisy surfaces, denoising results produced by our proposed
w-HO method, TV method [64], Lo minimization [27], and bilateral weighting Laplacian method [67],
respectively. The second and fourth rows show magnified views of Gargoyle and Maz-Planck.

Fic. 8. Our denoising results for four real scanned surfaces. From left to right: Rabbit, Angel,
Shell, and Embossment.
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TABLE 2
Quantitative evaluation results of Figures 6 and 7 for our proposed w-HO method, TV method
[64], Lo minimization [27], and bilateral weighting Laplacian method [67]. o is the standard deviation
of the Gaussian noise added to the clean surface. N-step records CPU costs in the normal filtering
step, and V step records CPU costs in the vertex updating step.

MSAE Ev,2 CPU costs (in seconds)

Models o Methods (x10-3) | (x10-3) | Nstep Vstep Total Foldovers
w-HO 2.40 0.79 7.35 0.203  7.553 0
TV 3.61 0.98 2.13 0.047  2.177 12
Block 0-15 £ 4.31 1.81 - 16.57  16.57 5
bw-Laplacian 5.66 1.01 1.45 0.078  1.528 37
w-HO 1.48 0.88 1.68 0.141  1.821 0
) TV 1.53 0.86 0.84 0.032  0.872 3
Fandisk 0-15 £ 3.85 1.12 - 7.53 7.53 3
bw-Laplacian 2.50 1.01 0.76 0.047 0.807 5
w-HO 1.29 0.94 184 0004 1.934 0
TV 2.51 1.22 0.67  0.016  0.686 7
Part 0.15 A 8.1 2.32 — 801 801 1
bw-Laplacian 4.22 1.23 0.53 0.047 0.577 7
w-HO 2.88 0.76 2.80 0.125  2.025 1
Joint 015 TV 4.21 1.20 1.98 0.031  2.011 17
Lo 12.7 2.37 - 12.84  12.84 4
bw-Laplacian 6.77 2.01 0.81 0.063  0.873 33
w-HO 2.9 0.92 1878  0.859  19.639 5
Bunny 0.2 TV 16.1 0.89 857 0234  8.804 61
£ 27.5 2.16 - 60.72  60.72 10
bw-Laplacian 13.4 0.88 7.89 0.375  8.265 68
w-HO 135 0.77 23.32 0688  24.008 I
Gargoyle | 0.25 TV 17.3 0.83 12.34  0.203  12.543 197
£ 31.0 1.79 - 57.36  57.36 15
bw-Laplacian 16.1 0.75 5.12 0.344 5.464 86
w-HO 10.8 0.85 31.81  0.734 32.544 3
TV 16.6 1.11 1341 0171  13.581 809
Max-Planck | 0.2 £ 33.5 1.86 - 74.05  74.05 58
bw-Laplacian 12.1 0.91 9.41 0.281 0.691 649

all faces.
e [ vertex-based surface-to-surface error:

V-1
1 e
Evn = 33 s Z ( Z | 8.,—) dist(v;, M)?

1=0 M1 (’Ui

where dist(v}, M) is the distance between the updated vertex v; and a triangle
of the clean surface M which is closest to v;.

Then, we compare our w-HO method to the other three methods using the above
two error metrics for the examples shown in Figures 6 and 7. The evaluation results are
listed in Table 2. As can be seen, our w-HO method outperforms the other methods
in the sense that angular errors (MSAE) from w-HO are significantly smaller than
all of the other methods, especially for CAD-like surfaces. It is also observed that
the results of w-HO have the least Ly vertex-based errors (€,2) in most cases. This
demonstrates that the results produced by w-HO are more faithful to the ground
truth surfaces.

The CPU costs of all the tested methods are recorded in the second-to-last column
of Table 2. For our w-HO, TV, and bw-Laplacian, the CPU costs of the normal

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.




Downloaded 01/10/19 to 141.216.78.40. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

SURFACE DENOISING USING HIGH ORDER REGULARIZATION B21

filtering step and vertex updating step are recorded separately. Moreover, w-HO uses
our vertex updating method, whereas TV and bw-Laplacian use the method proposed
by Sun et al. [51] to recover the surfaces. ¢y is the one-step denoising method that
directly updates vertex positions; thus we only record the CPU costs in the vertex
updating step for this method. For our w-HO method, the most time-consuming
part is solving the IN-sub problem. As mentioned in subsection 4.2, due to the error
forgetting property [62] of our ALM algorithm, we use a fast approximate strategy to
solve this subproblem. As can be seen, the bilateral weighting Laplacian method [67]
is the fastest method, while ¢y minimization [27] is the slowest. Although our w-HO
method is a little more computationally intensive than the TV method [64], the CPU
cost is still acceptable.

In terms of the CPU costs in the vertex updating step as shown in Table 2, we
find that our vertex updating method is a little slower than the method proposed by
Sun et al. [51]. However, our vertex updating method can significantly improve the
quality of reconstructed surfaces and reduce the foldovers.

6.3. Influence of parameters. To the best of our knowledge, most triangulated
surface denoising methods have parameters which need to be manually tuned. Among
the compared state-of-the-art methods (T'V [64], ¢y [27], and bw-Laplacian [67]), TV
has two parameters, and ¢; and bw-Laplacian have three parameters. Our w-HO
also has two parameters, i.e., & and rp. These two parameters need to be tuned for
producing prominent results. The first parameter is used to balance the fidelity and
regularization term of the normal filtering model (20). The second one is introduced
by the augmented Lagrangian method.

We use « to control the degree of denoising and smoothness of the result surface.
Figure 9 illustrates results of different o with fixed rp. As can be seen, if « is too large,
noise cannot be effectively removed as indicated in Figure 9(b); and if « is too small,
surfaces will be oversmoothed and fine features will be lost as illustrated in Figure 9(e).
For each noisy surface, there exist a range of « for our w-HO producing visually well
denoising results; see Figures 9(c) and (d). In order to generate both quantitatively
and visually well results, « is suggested in the range of [40,1100], with greater values
for non-CAD or scanned surfaces and with smaller values for CAD surfaces. Moreover,
a should be set with a smaller value for a higher level of noise, and vice versa. The
results of our algorithm changes little when « has small perturbations.

() Noisy (e) oo =200

F1c. 9. Denoising results for o with fized rp. From left to right: input noisy surface (corrupted
by Gaussian noise, standard deviation = 0.1 mean edge length), and results with different c.

The parameter 7, also has influence on denoising results. Figure 10 shows results
of different rp, with fixed a. As we can see, too small 7, will leave some noise on the
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surface as indicated in Figure 10(b), and too large rp should oversmooth the result
as illustrated in Figure 10(e). Again, for each noisy surface, there exist a range of rp
for our algorithm producing visually well results as shown in Figures 10(c) and (d).
For almost all the CAD surfaces, 7, can be set to 1 to produce both quantitatively
and visually well results. For non-CAD and scanned surfaces, rp is suggested in the
range of [0.1,1.2], with a greater value for a higher level of noise.

(e) rp =100

F1c. 10. Denoising results for rp with fized oo. From left to right: input noisy surface (corrupted
by Gaussian noise, standard deviation = 0.15 mean edge length) and results with different rp.

6.4. Algorithm convergence and effect of dynamic weights. Due to non-
linear and nonconvex constraints of the proposed high order normal filtering model
(20), it is a challenge to achieve the convergence analysis of Algorithm 1. However, we
can verify the convergence using numerical experiments. From the energy evolution
in Figure 11, we observe that the energy always decreases in each iteration. This
verifies the numerical convergence of Algorithm 1.
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F1G. 11. Energy evolution via iteration numbers of (a) surfaces in Figure 6 and (b) surfaces in
Figure 7.

Dynamic weights in the proposed normal filtering model (20) play a large role
in recovering sharp features of surfaces; see their effect in Figure 12. As we can see,
without dynamic weights, some sharp edges are smoothed a little in the denoising
procedure. In contrast, the result with these dynamic weights is better.

6.5. Comparison to £;-norm Laplacian-like normal filtering model. In
this subsection, we compare our normal filtering model (20) with the ¢;-norm Laplacian-
like normal filtering model to show the advantage of our second order difference (11)
over the Laplace-like operator (18) in surface denoising application. The ¢;-norm
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Aok

(a) ground truth (b) noisy (¢) result without dy-(d result with dy-
namic weights namic weights

Fic. 12. Denoising results of Doubletorus (corrupted by Gaussian noise, standard deviation
= 0.15 mean edge length). From left to right: the clean surface, input noisy surface, denoising result
produced by the proposed high order normal filtering model (20) without and with dynamic weights,
respectively.

Laplacian-like normal filtering model is given as

. * in||2
(32) Nrreuan{E(N)= Ruap(5"0N) + 5 ||N — N ||VM}7

where

On={N€eVy: N, =1vr},

Ruytap(6*6N) = ZWT<Z 5*6Ni|7)2>
i=1

(a) (b) (c) (d) (e)

Fi1G. 13. Denoising results of Fandisk (corrupted by Gaussian noise, standard deviation = 0.15
mean edge length). (a) is the noisy surface; (b) and (c) are results produced by £1-norm Laplacian-
like normal filtering model (32) without and with dynamic weights, respectively; (d) and (e) are
results produced by the high order mormal filtering model (20) without and with dynamic weights,
respectively.

1
2
T

The dynamic weight w, on each triangle is defined as

4
T:exp(— >7

which is used to enhance the sparsity of the proposed model (32). For the sake of
fairness, our normal filtering model (20) is compared with the Laplacian-like one (32)
without and with dynamic weights, respectively. As we can see in Figure 13, although
our normal filtering model (20) and the Laplacian-like model (32) both remove the
staircase effect, our model (20) can preserve sharp features well while the model (32)
with the Laplace-like operator cannot.

Z (N‘r - NT]')

7;€D1(75)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/10/19 to 141.216.78.40. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

B24 Z. LIU, R. LAI, H. ZHANG, AND C. WU

7. Conclusion. In this paper, we propose a triangulated surface denoising meth-
od using a newly defined discrete high order regularization. The method applies the
high order regularization to the normal vector field with a well-designed weighting
function. The variational model is solved by the augmented Lagrangian method with
dynamic weights strategy. Moreover, a new vertex updating scheme is presented to
overcome the orientation ambiguities introduced by previous vertex updating meth-
ods. We also compare our method to several denoising methods on a variety of
triangulated surfaces both qualitatively and quantitatively. Conventional methods ei-
ther smooth sharp features or generate staircase artifacts. Since our method preserves
sharp features well and produces no staircase effect, it outperforms the other three
compared methods. Thus it can be applied to more general surfaces containing both
sharp features and smoothly curved regions.
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