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ABSTRACT Mesh denoising is crucial for improving the quality of meshes required by scanning devices.
The main challenge is to maximally preserve geometric features while removing different kinds of noise. In
this paper, we propose a novel normal filtering model that incorporates a high order `p regularization term
and an `1 fidelity term. Then, vertex positions of the mesh can be reconstructed according to the filtered
face normals. Thanking to the proposed `p-`1 normal filtering model, our method has crucial advantage in
preserving geometric features and simultaneously is robust against different kinds of noise. Numerically, we
develop an efficient algorithm based on iteratively reweighted `1 minimization and augmented Lagrangian
method to solve the problem. We testify effectiveness of our mesh denoising method on synthetic meshes
and a broad variety of scanning data produced by the laser scanner and Kinect sensors. We compare our
method to state-of-the-art methods and demonstrate the superiority of our method in various cases.

INDEX TERMS Augmented lagrangian method, iteratively reweighted `1 minimization, mesh denoising,
3D geometry processing.

I. INTRODUCTION

In recent years, due to the rapid development of digital
scanning devices (e.g., Microsoft Kinect, Xtion Pro, Google
Project Tango, and Intel RealSense), more and more trian-
gulated meshes can be easily acquired from the real world.
Unfortunately, scanned meshes are usually corrupted by dif-
ferent kinds of noise introduced in physical scanning and
reconstruction processes. The noise will degrade the quality
of meshes and cause errors in downstream geometry appli-
cations, such as segmentation, parameterization, reconstruc-
tion, and visualization. Thus, the task of recovering high
quality meshes from noisy inputs becomes increasingly im-
portant. The main challenge of mesh denoising is to preserve
underlying geometric features of the surface as much as
possible while removing different kinds of noise including
Gaussian, impulsive, and mixed noise (impulsive noise is
called outliers sometimes).

Mesh denoising has been widely studied in the last two
decades. It is beyond our scope to review all existing mesh
denoising methods, and we only review several notable
methods and methods that are most relevant to this work.
Interested readers can refer to the works [1]–[3] for a compre-
hensive review of mesh denoising. In our opinion, mesh de-

noising methods can be rough classified into three categories:
filter-based, optimization-based, and data-driven methods.
Early filter-based methods [4]–[7] directly applied isotropic
smoothing on mesh vertices for removing noise. Although
these methods are simple and can remove noise from the
mesh, they also smooth geometric features evidently. Later
on, many anisotropic filtering methods [8]–[13] were pro-
posed to recover geometric features while removing noise.
Compared to the isotropic methods, the anisotropic methods
are more robust against the noise and can produce clearer
feature-preserving results. However, in the case of high
noise density, these anisotropic methods still fail to preserve
geometric features, especially for preserving sharp features
(sharp edges and corners). To recover sharp features of the
mesh, some methods [14]–[16] apply the bilateral filter on
face normals and then update the vertex positions according
to the filtered face normals. Although these bilateral normal
filtering methods can produce satisfactory results for preserv-
ing geometric features, the sharp features are still difficult to
recover when the noise level is high. More recently, Yadav et
al. [17] proposed a normal filter using a robust error norm,
which can efficiently preserve sharp features over the mesh.
Although their method preserves sharp feature well, it usually
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smoothes weak features and fine details of the surface. We
should point out that, these methods belong to two-stage
mesh denoising methods, i.e., face normal filtering followed
by updating vertex positions [3], [14]–[24]. The difference
between these two-stage methods is in their normal filtering
strategies.

The variational denoising methods formulate the denoising
process as an optimization problem and seek for a desired so-
lution that satisfied the optimization goal. The optimization-
based methods have became widespread recently. Zheng et
al. [14] presented a global normal filtering model using
bilateral weight function. Their method works well for pre-
serving fine details and smooth regions, but cannot recover
sharp features well. For preserving sharp features over the
surface, many researchers used the conception of sparsity
to remove the noise from the mesh. He and Schaefer [25]
used the `0 minimization for removing the noise by inducing
the sparsity for an discrete edge-based operator. However,
the `0 minimization problem is NP-hard. A critical limita-
tion of the problem is that the CPU cost of solving it is
very time consuming. Moreover, for mesh denoising, the
`0 minimization method tends to flatten smooth regions for
its high sparsity requirement. In image processing commu-
nity, the sparsity of the gradient (first order operator) is
widely used for preserving image edges. The corresponding
`1 minimization problem is the famous total variation (TV)
model [26]. Inspired by the success of TV model in image
processing, many researchers [18], [27], [28] extended it to
mesh denoising for preserving sharp features. However, due
to the using of the first order information over the surface,
the TV-based models suffer producing staircase artifacts in
smoothly curved regions. In order to overcome the staircase
artifacts in smooth regions, Liu et al. [3] presented a `1-based
high order normal filtering model. Yet, the high order model
sometimes blurs sharp features, especially for dealing with
the large noise. Zhong et al. [29] proposed a `1-based normal
filtering model with three sparsity terms, which can recover
both sharp features and smooth regions well. Moreover, their
method can deal with outliers. Unfortunately, their method
contains too many parameters to manually tune. The process
of parameter tuning of their method is tedious.

More recently, researchers proposed some data-driven
methods. Wang et al. [30] proposed a method based on the
cascades normal regression, which can remove the noise
without assumptions about geometric features of the under-
ling surface and noise patterns. Their method first learns non-
linear regression functions mapping the filtered face normal
descriptors to the face normals of the ground-truth input, and
then applied the learned functions to compute filtered face
normals. Wang et al. [31] presented a data-driven method
by learning normal variations in two steps. In the first step,
they learn mapping from the noisy input to its ground-truth
counterpart and use neural networks to remove the noise,
which might lost some fine details of the underling surface.
Then in the second step, they learn to recover the missing fine
details. Although these data-driven methods perform well for

real scanned data, the performance of these methods depend
on the completeness of the training data set.

As we can see, the above mentioned mesh denoising meth-
ods have their own limitations. This paper tries to overcome
these limitations by using a novel normal filtering model
including only two terms: a high order `p regularization
term for preserving geometric features (sharp features, fine
details, and smoothly curved regions) without introducing
unnatural artifacts, and an `1 fidelity term for encouraging
the solution be less dependent on the exact value of outliers
and noise. After filtering the face normals of the mesh, the
vertex positions should be reconstructed to match the filtered
face normals. To sum up, the main contributions of the paper
are listed as follows:

• We present a novel high order normal filtering model.
The `p regularization of the model enables us to effi-
ciently remove noise and preserve geometric features
maximally, while the `1 fidelity is formulated for deal-
ing with outliers.

• We propose an efficient minimization method based on
iterative reweighted `1 minimization (IRL1) and aug-
mented Lagrangian method (ALM) to solve the prob-
lem.

• We demonstrate the performance of our denoising
method on synthetic meshes and a variety of scanned
data acquired by the laser scanner and Kinect sensors.
Experiments illustrate that our method outperforms the
compared state-of-the-art methods visually and quanti-
tatively.

The remainder of this paper is organized as follows. In
Section II, we present a high order `p-`1 normal filtering
model. An efficient algorithm based on iteratively reweighted
`1 minimization (IRL1) and augmented Lagrangian method
(ALM) is proposed to solve the model. In Section III, vertex
positions are reconstructed according to the filtered face nor-
mals. In Section IV, we discuss our two-stage mesh denoising
method and compare it with typical existing methods both
visually and quantitatively. Section V concludes the paper.

II. HIGH ORDER NORMAL FILTERING VIA `P -`1
MINIMIZATION
In this section, we introduce the high order `p-`1 mini-
mization on face normals followed by some definitions over
triangulated meshes. A mesh of arbitrary topology with no
degenerate triangles in R3 is represented as M . The set
of vertices, edges, and triangle faces of M are denoted as
{vi : i = 1, 2, · · · ,V}, {ei : i = 1, 2, · · · ,E}, and
{τi : i = 1, 2, · · · ,T}, respectively. Here V, E, and T are
the numbers of vertices, edges, and faces of M .

A. HIGH ORDER NORMAL FILTERING MODEL

For a given noisy mesh, we write face normals of the mesh
as Ñ. To remove noise in Ñ, we treat face normals N as a
variable and solve the following `p-`1 minimization problem:
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min
N∈CN

{
α
∑
l

len(l)‖∇2N|l‖p +
∑
τ

area(τ)‖Nτ−Ñτ‖

}
,

(1)

where

CN =
{

N ∈ R3×T : ‖Nτ‖ = 1,∀τ
}
,

‖∇2N|l‖p =
(( 3∑

i=1

|(∇2Ni)|l|2
) 1

2

)p
,

α is a positive parameter, len(l) is the length of line l
connecting the barycenter with one vertex of triangle τ , and
area(τ) is the area of triangle τ . The high order operator ∇2

is defined on each line l of the mesh, which reads as follows

(∇2N)|l = we+(Nτ −Nτ+) + we−(Nτ −Nτ−),

where e+ and e− are two edges sharing the common vertex of
l, τ+ is the triangle sharing e+ with τ , and τ− is the triangle
sharing e−. we+ and we− are two positive weights defined as

we = exp(−‖Ne,1 −Ne,2‖2/2σ2), (2)

where Ne,1 and Ne,2 are two normals sharing the common
edge e. All aforementioned descriptions are indicated in Fig.
1. For more details about the description of the high order
operator∇2, we refer readers to [3], [32].

b

b

b b

b

b

τ

τ+

τ−

e+

e−
l

1

FIGURE 1: The illustration of ∇2 over the line l plotted in
cyan in triangle τ with the barycenter plotted in red.

The proposed high order `p-`1 normal filtering model (1)
consists of `p regularization and `1 fidelity terms. The `p
regularization makes the solution smooth while preserving
geometric features as much as possible. The `p regularization
is nonconvex. It penalizes large variations of the signal less
than convex ones (`1 and `2), and preserves sharp features
better. This means that, using of nonconvex regularization
can produce better results than the corresponding convex
ones. The view, nonconvex regularization offers richer pos-
sibilities to recover high quality images with neat images,
has been verified in image processing community widely

[33]. The fidelity term of the model makes the solution
harmonize well with the input noisy mesh. Yet, if the noisy
mesh includes impulsive and mixed noise, the traditional `2
fidelity cannot produce a satisfactory denoised result. As we
know, the `1 fidelity was first proposed in the work [34]
for image restoration with impulsive and mixed noise. Here,
we introduce the `1 fidelity in mesh denoising to help the
solution less dependent on the exact value of outliers and
noise.

B. NUMERICAL ALGORITHM FOR PROPOSED MODEL

Due to the using of `p norm, the `p-`1 normal filtering model
(1) is nonconvex and nonsmooth, which is challenging to
directly solve. Fortunately, Candes et al. [35] tackled this
challenge by the so-called iteratively reweighted `1 (IRL1)
minimization. Their method approximates the exact solution
by solving a sequence of `1 problems. The IRL1 algorithm
was originally introduced to improve the sparsity in `1 related
compressed sensing problems [33], [35].

Here, we use IRL1 algorithm to solve our nonconvex `p-`1
model (1). More specifically, (1) can be tackled by solving a
sequence of `1-`1 problems as followed:

Nk+1 = arg min
N∈CN

{
α
∑
l

len(l)Wk
l ‖∇2N|l‖

+
∑
τ

area(τ)‖Nτ − Ñτ‖
}
, (3)

where

Wk
l =

p

(‖∇2Nk
l ‖+ ε)1−p

. (4)

ε is a small constant to prevent the denominator from being 0
and we set it as 0.001.

Because of the involvement of vectorial seminorms and
nonlinear constraints of (3), each `1-`1 problem (3) is nondif-
ferentiable and thus still hard to solve. Recently, the variable
splitting and augmented Lagrangian method (ALM) have
attained intensive attention for their efficiency in solving `1
related optimization problems [36]. Thus, the minimization
problem (3) is first rewritten as a constrained minimization
problem by introducing a pair of new variables, which reads

min
N,X,Y

α
∑
l

len(l)Wk
l ‖Xl‖+

∑
τ

area(τ)‖Yτ‖+ Ψ(N)

s.t., X = ∇2N,Y = N− Ñ, (5)

where

Ψ(N) =

{
0, N ∈ CN

+∞, N /∈ CN.
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Then, the augmented Lagrangian function is introduced to
handle the above constrained optimization problem

L (N,X,Y; Λx,Λy)

= α
∑
l

len(l)Wk
l ‖Xl‖+

∑
τ

area(τ)‖Yτ‖

+ Ψ(N) +
∑
l

len(l)Λx,l · (Xl −∇2N|l)

+
rx
2

∑
l

len(l)‖Xl −∇2N|l‖2

+
∑
τ

area(τ)Λy,τ ·
(

Yτ − (Nτ − Ñτ )
)

+
ry
2

∑
τ

area(τ)‖Yτ − (Nτ − Ñτ )‖2, (6)

where Λx = {Λx,l} ∈ R3×L,Λy = {Λy,τ} ∈ R3×T are
two Lagrange multipliers, and rx and ry are two positive
penalty coefficients. L is the number of lines connecting
the barycenter and one vertex of triangle τ . Explicitly, the
problem (6) can be divided into three subproblems: the N ,
X, and Y subproblems.

Sub-minimization problem with respect to N: we can write
the N subproblem as

min
N

Ψ(N) +
rx
2

∑
l

len(l)‖∇2N|l − (Xl +
Λx,l
rx

)‖2

+
ry
2

∑
τ

area(τ)‖Nτ − Ñτ − (Yτ +
Λy,τ
ry

)‖2, (7)

which is a quadratic optimization with the unit normal con-
straints Ψ(N). Here we first ignore the term Ψ(N) and solve
a quadratic problem, and then project the solution onto a unit
sphere. Specifically, the quadratic problem without the term
Ψ(N) is as followed

min
N

rx
2

∑
l

len(l)‖∇2N|l − (Xl +
Λx,l
rx

)‖2

+
ry
2

∑
τ

area(τ)‖Nτ − Ñτ − (Yτ +
Λy,τ
ry

)‖2. (8)

The solution of the problem (8) is achieved by a sparse
linear system, which can be solved by using well developed
numerical packages.

Sub-minimization problem with respect to X: we can write
X subproblem as

min
X

α
∑
l

len(l)Wk
l ‖Xl‖

+
rx
2

∑
l

len(l)‖Xl − (∇2N|l −
Λx,l
rx

)‖2. (9)

As the problem (9) is decomposable, we can solve each Xl

independently. For each Xl, we need to solve the following
problem

min
Xl

αWk
l ‖Xl‖+

rx
2
‖Xl − (∇2N|l −

Λx,l
rx

)‖2,

which has a closed form solution as

Xl = max(0, 1− αWk
l

rx‖ζx,l‖
)ζx,l, (10)

where

ζx = ∇2N− Λx
rx
.

Sub-minimization problem with respect to Y: we can write
Y subproblem as

min
Y

∑
τ

area(τ)‖Yτ‖

+
ry
2

∑
τ

area(τ)‖Yτ − (Nτ − Ñτ −
Λy,τ
ry

)‖2. (11)

Analogously, the problem (11) also can be decomposed, we
can solve each Yτ solely. For each Yτ , we need to solve the
following problem

min
Yτ
‖Yτ‖+

ry
2
‖Yτ − (Nτ − Ñτ −

Λy,τ
ry

)‖2,

which has a closed form solution as

Yτ = max(0, 1− 1

ry‖ζy,τ‖
)ζy,τ , (12)

where

ζy = N− Ñ− Λy
ry
.

Assembling the above parts, the overall alternating min-
imization algorithm for solving the high order `p-`1 model
(1) is sketched in Algorithm 1. As we can see, Nk,c is the
sequence produced by Algorithm 1, where the index k refers
to outer iterations and c refers to inner iterations. In each
outer iteration, we first solve an `1-`1 minimization problem
by ALM, and then update the weights W according to the
current face normals N. Furthermore, in each inner iteration,
the algorithm first solves three subproblems, and then updates
the Lagrange multipliers. In summary, it is challenge to find
the global minimizer of the nonconvex nonsmooth minimiza-
tion problem (1) with the nonlinear constraints. We adapt
IRL1 and ALM to approximate a well enough solution of
the problem (1) numerically. In Section IV, we will show the
efficiency of our algorithm, which can produce satisfactory
denoising results visually and quantitatively.

III. VERTEX UPDATING SCHEME
After obtaining filtered face normals by solving the high
order `p-`1 normal filtering model (1), vertex positions of the
mesh should be updated to match the filtered face normals.
To this end, we use a vertex updating scheme presented by
Liu et al. [3]. This scheme updates the vertex positions by
minimizing the following problem

min
v

{
E(v) =

∑
τ=(vi,vj ,vk)

(
Nτ −

(vj − vi)× (vk − vi)
‖(vj − vi)× (vk − vi)‖

)2
+
η

2
||v − ṽ||2

}
, (13)
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Algorithm 1: IRL1 and ALM for solving high order `p-
`1 normal filtering model (1)

Initialization: N−1 = 0,W−1 = 1, k = 0, ε = 1e− 6;
repeat

Initialization: Λk,0x = Λk,0y = 0,Nk,−1 = Xk,−1 =
Yk,−1 = 0, c = 0;
repeat

Solve N subproblem
For fixed (Λk,cx ,Λk,cy ,Xk,c−1,Yk,c−1), compute

Nk,c from (8);
Normalize Nk,c;

Solve X subproblem
For fixed (Λk,cx ,Λk,cy ,Nk,c,Yk,c−1), compute

Xk from (10) ;
Solve Y subproblem

For fixed (Λk,cx ,Λk,cy ,Nk,c,Xk,c), compute Yk

from (12) ;
Update Lagrange multipliers

Λk,c+1
x = Λk,cx + rx

(
Xk,c − (∇2N)k,c

)
;

Λk,c+1
y = Λk,cy + ry(Yk,c −Nk,c + Ñ) ;

until
∑
τ
area(τ)‖Nk,c −Nk,c−1‖ < ε or c ≥ 50;

Nk = Nk,c ;
Update weight Wk through (4);

until
∑
τ
area(τ)‖Nk −Nk−1‖ < ε or k ≥ 20;

return Nk.

where (vi, vj , vk) are vertices of τ with counterclockwise
order, ṽ is vertex positions of the noisy surface and η is
a small positive parameter. This vertex updating model can
overcome the trianglewise orientation ambiguity problem
produced by the vertex updating model proposed by Sun et
al. [37]. Due to this vertex updating model is not our main
contribution, we refer interested readers to the work [3] for
further information.

We can reformulate partial derivatives of (13) with respect
to vi as follows:

∇viE(v) =
∑

τ∈M1(vi)

(
Nτ − (Nτ · Nτ )Nτ

)
×(vj − vk)

+ η(vi − ṽi), (14)

where Nτ is the updating normal of τ according to updated
v (the derivation process of (14) can refer to the work [3]),
and M1(vi) is the set of triangles containing vertex vi.
With the gradient information calculated from (14) and the
initial vertex positions ṽ, we use gradient descent algorithm
to minimize the problem (13). We adopt the backtracking
line search strategy with our gradient descent algorithm to
adaptively choose the step size. In each iteration, the line
search strategy uses only the energy and gradient evaluated
at current and previous iterations.

IV. EXPERIMENT RESULTS AND COMPARISONS
In this section, numerical experiments are presented on a
wide range of triangulated meshes including CAD, non-CAD
and raw scanned data (captured by the laser scanner and
Kinect sensors). The tested meshes are corrupted by either
synthetic or raw scanned noise. The synthetic noise added
in random directions is generated by Gaussian, impulsive or
mixed Gaussian and impulsive noise. We use two quantities
as in the works [3], [38] to verify the robustness of our
method to mesh quality. These two quantities are defined as
follows:

Dglobal =
minτ area of τ

maxτ area of τ
,

Dlocal = min
τ

mine≺τ length of e

maxe≺τ length of e
.

The mesh information of the surfaces used in this paper are
recorded in Table 1. From Table 1 we can see that, several
meshes are very irregular, e.g., David and Child produced
by Kinect sensors. Our method can effectively handle all the
meshes and produce satisfactory denoising results. The clean
meshes tested in this section are listed in Fig. 2.

TABLE 1: Information of meshes tested in this paper

Mesh #vertices #triangles Dglobal Dlocal

Julius 36,201 71,912 0.004711 0.107538
Part 4,261 8,530 0.207208 0.466109
Fandisk 6,475 12,946 0.020272 0.333103
Joint 20,902 41,808 0.058784 0.286217
Bunny-hi 35,233 70,462 0.001832 0.078386
Child (Fig. 6) 50,002 100,000 0.003699 0.158511
Rabbit 37,394 73,679 0.080543 0.099193
David 51,789 101,937 1.07353e-005 0.022549
Child (Fig. 8) 70,135 138,430 6.37239e-006 0.027263
Dodecahedron 4,610 9,216 0.617998 0.618011
Vase-Lion 50,002 100,000 0.000136 0.025853
Block 8,771 17,550 0.004967 0.006838
Bunny 29,849 59,694 0.140844 0.515311

We have implemented our mesh denoising method and all
methods compared in the paper in C++. All of the numerical
examples are tested on a standard PC with Intel Core i7
processor and 16GB RAM. For showing faceting effect, all
meshes are rendered in flat-shading model. We will first dis-
cuss influence of parameters of our method. Then, both visual
and quantitative comparisons of state-of-the-art methods are
presented.

A. PARAMETER CHOICES
As we know each mesh denosing method has its own pa-
rameters to manually tune for producing satisfactory results.
Specifically, our method has two parameters, i.e., α and p. α
is applied to balance the fidelity and regularization terms of
our high order `p-`1 model (1), while p is used to control the
abilities of feature preserving and noise suppressing.

The parameter α helps the denoising result to harmonize
well with the input mesh, which is used to control the degree
of denoising. According to our numerical experiments, when
α is too small, noise of the mesh cannot be completely
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FIGURE 2: The clean meshes tested in Section IV. From top left to bottom right: Julius, Part, Fandisk, Joint, Bunny-Hi, Child,
Block, and Bunny.

removed showed in Fig. 3b. During the increasing of α, the
noise is removed obviously. However, if α is too large, the
result is over-smoothed and a lot of details are flattened; see
Fig. 3e. Moreover, for one noisy mesh, these exist a range of
values of α to produce promising results. It indicates that our
method is insensitive to perturbations of α; see Figs. 3c and
3d for examples.

The parameter p (0 < p < 1) is used to determine
the degree of nonconvexity of the `p regularization of our
model (1). Too strong nonconvexity of the regularization will
sharpen the result and produce false edges in smooth regions;
see Fig. 4b. In contrast, too weak nonconvexity will yield
a result with blurred sharp features showed in Fig. 4e. In
our experiments, p is suggested in the range of [0.4, 0.8] for
producing satisfactory results; see Figs. 4c and 4d.

B. QUALITATIVE COMPARISONS AND EXAMPLES
Our high order `p-`1 denoising method (abbreviated as `p-
`1) is visually compared with five state-of-the-art methods
including high order normal filtering [3], total variation
normal filtering [18], `0 minimization [25], robust and high
fidelity mesh denoising [17], and bilateral normal filtering
[39] (abbreviated as HO, TV, `0, RHM, and BF, respectively).
We should point out that parameters in all the tested methods
are elaborately tuned to produce visually well results.

In Fig. 5, we demonstrate and compare denoising results
for CAD meshes containing both sharp features (sharp edges
and corners) and smooth regions (smoothly curved regions
and flat regions). As we can see, except BF, all the other
five methods (`p-`1, HO, TV, `0, and RHM) can preserve
sharp features in some ways. By using the robust error norm,
RHM can recover geometric features, but it usually flattens
weak features and curves sharp features; see the zoomed view
of Fig. 5f. One important thing can be observed, TV and

`0 produce undesired artifacts in smoothly curved regions,
whereas the high order methods (`p-`1 and HO) can prevent
these unnatural effects. The reasons are as follows. Due to
the using of first order information of the mesh, TV suffers
from staircase effects in smooth regions; see the zoomed-
in view of Fig. 5d. This phenomenon is more serious for
`0. `0 produces false edges in smooth regions sometimes
for its high sparsity requirement; see Fig. 5e. In contrast,
due to the using of high order information, both `p-`1 and
HO do well over smooth regions. In our experiments, when
the noise level is low, both `p-`1 and HO can eliminate the
staircase effects and simultaneously recover sharp features.
Yet, when meshes corrupted by considerable noise, HO fails
to keep sharp features; see the zoomed-in view of Fig. 5c. In
contrast, our `p-`1 can enforce its properties and yield more
attractive results with sharp features preserving; see Fig. 5b.
Thus, qualitative comparisons in Fig. 5 demonstrate that our
method outperforms the other compared methods in terms of
preserving sharp features and recovering smooth regions.

Fig. 6 shows the comparison results of non-CAD meshes.
We can observe that, all the tested methods remove noise
effectively. However, TV and `0 tend to flatten fine details,
and `0 makes this situation even worse; see Figs. 6d and
6e. In some cases, `0 sharpens geometric features and pro-
duces false edges. Although HO and RHM do not sharpen
features, they oversmooth features more or less. In addition,
the oversmooth effect of RHM is more serious than that of
HO; see Figs. 6f and 6c. Compared to these methods, `p-`1
and BF produce visually better results; see Figs. 6b and 6g.
An important thing can be observed that, with the noncovex
`p regularization, our method can preserve fine details better
than BF, leading to higher quality of the results. Furthermore,
HO smoothes some weak features, whereas our method `p-
`1 recovers these weak features as much as possible; see
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(a) Noisy (b) α=0.01 (c) α=0.012 (d) α=0.015 (e) α=0.025

FIGURE 3: Denoising results of Julius for different α. From left to right: input noisy mesh (corrupted by Gaussian noise,
standard deviation = 0.1 mean edge length) and results with different α.

(a) Noisy (b) p=0.1 (c) p=0.4 (d) p=0.8 (e) p=0.95

FIGURE 4: Denoising results of Part for different p. From left to right: input noisy mesh (corrupted by Gaussian noise, standard
deviation = 0.1 mean edge length) and results with different p.

the zoomed views of Figs. 6b and 6c. In short, the results
demonstrate that our method can also do a good job on non-
CAD meshes.

In Figs. 7 and 8, we show denoising results on a variety
of real scanning data. In Fig. 7, we present the comparison
results of a mesh acquired by the laser scanner. As can
be seen, our method `p-`1 and BF produce high fidelity
results; see Figs. 7b and 7g. HO blurs some weak features
a little; see Fig. 7c. In contrast, TV and `0 flatten some
fine details. This artifact is more serious for `0 for its high
sparsity requirement, see Figs. 7d and 7e. In addition, RHM
oversmoothes small-scale features; see Fig. 7f. We also verify
the effectiveness of our method on meshes produced by
Kinect sensors. In Fig. 8, we compare the results produced by
our method and the data-driven method proposed by Wang et
al. [30]. As we can observe, even for the meshes produced
by Kinect sensors with high level noise, Our method `p-`1
still can produce high quality results preserving geometric
features well. In contrast, the method in [30] smoothes some
fine details; see Fig. 8. In summary, our method is robust
and can recover high quality meshes from the noisy inputs
obtained from the real world.

A stress test for our method with increasing noise level is
showed in Fig. 9. We can see that, when the noise level is

smaller than the feature size, our method can preserve sharp
features perfectly. However, if the noise level is too high,
our method will fail to remove the noise and preserve sharp
features; see the last column of Fig. 9.

It is necessary to explain the differences between our
method and the method in [29]. Both methods are variational
methods. The method in [29] has five parameters to tune for
producing satisfactory results, while our method only has two
main parameters. Although both methods use the same high
order operator, the norms in regularization terms of these
two methods are totally different. Specifically, the method in
[29] uses `1 norm in its high order regularization, while our
method uses `p norm. Thus, our method is more robust for
preserving geometric features, see Fig. 10 for example.

Fig. 11 demonstrates comparison results of the meshes
corrupted by impulsive or mixed noise. As we can see in
Fig. 11b, our method `p-`1 can remove impulsive or mixed
noise completely and simultaneously preserve geometric fea-
tures well. In contrast, HO, TV, and `0 cannot effectively
remove impulsive or mixed noise; see Figs. 11c, 11d, and
11e. Although RHM and BF can remove the impulsive or
mixed noise, they oversmooth weak features and fine details
evidently; see Figs. 11f and 11g. Thus, as the result of using
`1 fidelity, our method has crucial advantages in handling the
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(a) (b) (c) (d) (e) (f) (g)

FIGURE 5: Comparisons of denoising results on CAD meshes (corrupted by Gaussian noise, standard deviation = 0.2 mean
edge length). From left to right: (a) input noisy meshes, denoising results produced by (b) our method `p-`1, (c) HO [3], (d) TV
[18], (e) `0 [25], (f) RHM [17], and (g) BF [39], respectively. The even rows are zoomed-in views.

(a) (b) (c) (d) (e) (f) (g)

FIGURE 6: Comparisons of denoising results on non-CAD meshes (corrupted by Gaussian noise, standard deviation = 0.3
mean edge length). From left to right: (a) input noisy meshes, denoising results produced by (b) our method `p-`1, (c) HO [3],
(d) TV [18], (e) `0 [25], (f) RHM [17], and (g) BF [39], respectively. The even rows are zoomed-in views.
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(a) (b) (c) (d) (e) (f) (g)

FIGURE 7: Comparisons of denoising results by the laser scanner. From left to right: (a) input noisy mesh, denoising results
produced by (b) our method `p-`1, (c) HO [3], (d) TV [18], (e) `0 [25], (f) RHM [17], and (g) BF [39], respectively. The second
row is the zoomed-in view.

FIGURE 8: Denoising results of scanning data captured by Kinect sensors. From left to right: noisy mesh, denoising results
produced by our method `p-`1 and the method proposed by Wang et al. [30], noisy mesh, and results produced by ours and the
method proposed by Wang et al. [30].

FIGURE 9: Denoising results of Dodecahedron corrupted by
different levels of noise. The first row shows noisy meshes
(corrupted by Gaussian noise, standard deviation = 0.3, 0.4,
0.5, and 0.6 mean edge length, respectively). The second row
shows the corresponding results produced by our method.

meshes corrupted by impulsive or mixed noise.
The above visual comparisons present that our denoisng

method has the best denoising result among all the tested
methods. In the following paragraphs, we will compare our
method to the other five quantitatively.

C. QUANTITATIVE COMPARISONS
In addition to the above qualitative comparisons, to show
more objective comparisons, quantitative evaluations are car-

FIGURE 10: Comparison of denoising results on Vase-Lion
(corrupted by Gaussian noise, standard deviation = 0.3 mean
edge length). From left to right: clean mesh, noisy mesh,
and results produced by our method `p-`1 and the method
proposed by Zhong et al. [29].

ried out in this subsection. For meshes whose ground truth
shapes are known, two widely-used error metrics that, mean
square angular error (MSAE) and `2 vertex-based surface-to-
surface error (Ev,2), are employed to measure the deviation
of the denoising result from the clean mesh [3], [29], [32].
These two error metrics are defined as follows:

• Mean square angular error (MSAE):

MSAE = average(∠(N
′
,N)),
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(a) (b) (c) (d) (e) (f) (g)

FIGURE 11: Comparisons of denoising results in handling impulsive or mixed noise. From left to right: (a) noisy meshes
(Block is corrupted by 10 % of impulsive noise with standard deviation = 1.0 mean edge length, and Bunny is corrupted by
15% of impulsive noise with standard deviation = 1.0 mean edge length and Gaussian noise with standard deviation = 0.1 mean
edge lenth), denoising results produced by (b) our method `p-`1, (c) HO [3], (d) TV [18], (e) `0 [25], (f) RHM [17], and (g) BF
[39], respectively. The even rows are zoomed-in views.

TABLE 2: Quantitative evaluation results of Figs. 5, 6, and 11 for all the test methods including our method `p-`1, HO [3], TV
[18], `0 [25], RHM [17], and BF [39].

MSAE(×10−3), Ev,2(×10−3); Time(in Seconds)

Meshes `p-`1 HO TV `0 RHM BF

Fandisk 3.51, 1.76; 5.44 4.88, 2.39; 1.18 4.13, 1.91; 0.68 5.09, 3.38; 20.1 5.77, 2.87; 8.88 5.31, 3.14; 0.25
Joint 1.51, 1.57; 12.8 2.55, 1.72; 1.07 2.65, 1.61; 0.71 4.85, 2.19; 39.8 2.69, 1.78; 15.3 10.6, 3.41; 1.04
Bunny-Hi 17.6, 1.57; 15.1 19.5, 2.42; 12.2 21.6, 1.77; 9.85 55.9, 2.83; 81.3 34.3, 21.2; 56.3 18.6, 1.62; 5.16
Child 25.7, 1.19; 14.5 31.5, 1.23; 11.8 40.5, 1.16; 6.73 99.1, 2.01; 57.4 48.8, 1.27; 34.1 33.9, 0.99; 2.32
Block 2.67, 1.09; 12.5 9.34, 9.16; 9.14 21.2, 11.6; 3.83 47.6, 17.1; 49.9 5.46, 3.16; 42.1 20.7, 4.88; 1.26
Bunny 5.59, 0.87; 38.4 38.4, 4.15; 28.6 49.1, 4.32; 16.1 51.1, 7.16; 100 24.8, 17.4; 96.4 16.3, 2.02; 8.73

where ∠(N
′
,N) is the square angle between the nor-

mal of the denoising result and the clean surface,
average(∠(N

′
,N)) is the square angle averaged over all

faces.
• L2 vertex-based surface-to-surface error:

Ev,2 =

√√√√√ 1

3
∑
τ

area(τ)

V−1∑
i=0

(
∑
M1(vi)

area(τ))dist(v,i,M)2,

where dist(v,i,M) is the distance between the updated
vertex v

′

i and a triangle of the clean surface M which
is closest to v

′

i, and M1(vi) is the set of triangles
containing vertex vi.

The first metric is to estimate the mean square angular error
between face normals of the clean mesh and those of the
denoising result, and the second one is to measure the mean
positional error between the clean mesh and the denoised
one. Our method `p-`1 is compared to the other state-of-the-
art methods by using the two metrics for the examples in Figs.
5, 6, and 11. The evaluation results are listed in Table 2.

As can be seen in Table 2, for both CAD and non-
CAD meshes, our method `p-`1 outperforms all the other
compared methods. The values of MSAE of our method are
significantly smaller than the other five methods. From Table
2 we also observe that, in most cases, the results produced
by our method `p-`1 have least errors of Ev,2 showing that
the results from our method are more faithful to the corre-
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sponding clean meshes. Besides, for the meshes corrupted by
impulsive and mixed noise, the values of MSAE and Ev,2 of
our method are also significantly smaller than the other com-
pared methods. These quantitative evaluations present that
our method `p-`1 outperforms the other five compared state-
of-the-art methods. Accordingly, the quantitative evaluation
results are consistent with the qualitative comparisons, which
show the superiority of the method proposed by us.

We also record the CPU costs of all the tested methods in
Table 2. As we can see, `0 is the slowest method, while BF is
the fastest one. Although RHM is faster than `0, it is slower
than all the other methods. We also can observe that, the first
order method (TV) is faster than the second order methods
(HO and `p-`1) obviously. As expected, our method `p-`1
is slower than its convex counterpart (HO). In summary, al-
though our method `p-`1 is a little computationally intensive,
the CPU costs of it are still acceptable; see the CPU costs of
our method in Table 2.

V. CONCLUSION
In this paper, we present a novel high order `p-`1 method
for feature-preserving mesh denoising. The method applies
the `p-`1 minimization on face normals, which is a challenge
for optimization. We propose an iterative algorithm based on
iteratively reweighted `1 minimization to solve the problem.
Each subproblem in the iteration can be solved by augmented
Lagrangian method. Then, vertex positions are reconstructed
according to the filtered face normals. Various experiment re-
sults illustrate the advantages of our mesh denoising method
over the state-of-the-art methods on both synthetic meshes
and real scanning data.

Our mesh denoising method is somewhat computationally
expensive for large meshes. Thus, how to decrease the CPU
cost of our method is a future work.
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