
sensors

Article

Robust Mesh Denoising via Triple Sparsity

Saishang Zhong 1,2, Zhong Xie 1,2, Jinqin Liu 1 and Zheng Liu 1,2,*
1 Faculty of Information Engineering, China University of Geosciences, Wuhan 430074, China;

saishang@cug.edu.cn (S.Z.); xiezhong@cug.edu.cn (Z.X.); ljqcug@163.com (J.L.)
2 National Engineering Research Center of Geographic Information System, China University of Geosciences,

Wuhan 430074, China
* Correspondence: liu.zheng.jojo@gmail.com

Received: 26 January 2019; Accepted: 21 February 2019 ; Published: 26 February 2019

Abstract: Mesh denoising is to recover high quality meshes from noisy inputs scanned from the
real world. It is a crucial step in geometry processing, computer vision, computer-aided design,
etc. Yet, state-of-the-art denoising methods still fall short of handling meshes containing both sharp
features and fine details. Besides, some of the methods usually introduce undesired staircase effects
in smoothly curved regions. These issues become more severe when a mesh is corrupted by various
kinds of noise, including Gaussian, impulsive, and mixed Gaussian–impulsive noise. In this paper,
we present a novel optimization method for robustly denoising the mesh. The proposed method is
based on a triple sparsity prior: a double sparse prior on first order and second order variations of
the face normal field and a sparse prior on the residual face normal field. Numerically, we develop
an efficient algorithm based on variable-splitting and augmented Lagrange method to solve the
problem. The proposed method can not only effectively recover various features (including sharp
features, fine details, smoothly curved regions, etc), but also be robust against different kinds of
noise. We testify effectiveness of the proposed method on synthetic meshes and a broad variety
of scanned data produced by the laser scanner, Kinect v1, Kinect v2, and Kinect-fusion. Intensive
numerical experiments show that our method outperforms all of the compared select-of-the-art
methods qualitatively and quantitatively.

Keywords: mesh denoising; triple sparsity; Kinect; variable-splitting; augmented Lagrange method

1. Introduction

Recently, with the development of consumer-grade scanner devices (e.g., Microsoft Kinect,
Xtion Pro, Google Project Tango, and Intel RealSense), triangulated meshes can be easily acquired
from the real world. The scanned meshes can be further used in a variety of application domains,
such as geometry processing, computer vision, virtual reality, cultural heritage preservation, and
terrain modeling. However, these scanned meshes are inevitably contaminated by different kinds of
noise, introduced by the scanning process and the reconstruction algorithm. The noise can not only
degrade the quality of meshes, but also cause errors in downstream geometry applications [1]. Thus,
the task of removing noise from scanned meshes becomes increasingly important. The main challenge
is to remove noise while preserving both sharp features (including edges and corners) and fine details
as well as preventing introducing undesired staircase effects in smooth regions. This problem becomes
more difficult when meshes are polluted by different kinds of noise including Gaussian, impulsive,
and mixed noise.

Mesh denoising is a fundamental problem in geometry processing, which has been studied for
years. Early, filtering methods are wildly applied in mesh denoising. The filtering methods can
be divided into two categories: isotropic and anisotropic methods. The isotropic methods [2,3] are
classical for their simplicity. Although these methods can remove noise, they often cause significant

Sensors 2019, 19, 1001; doi:10.3390/s19051001 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s19051001
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 1001 2 of 16

shape distortion. The reason is that these methods do not consider geometric features during the
denoising. Later on, for preserving geometric features, many anisotropic methods were proposed [4–9].
When the level of noise is low, the anisotropic methods work well. However, when the noise level
increases, these methods tend to blur sharp features. Recently, bilateral filtering methods have been
studied in mesh denoising [10,11]. Since these methods also belong to anisotropic methods, they still
blur sharp features. In order to preserve sharp features, some works [12–14] applied the bilateral
filtering in the face normal field. Unfortunately, when the noise level is high, the bilateral normal
filtering proposed by Zheng et al. [12] still cannot recover sharp features well. Zhang et al. [13]
proposed a normal filtering method based on a well-designed guided normal field. Although their
method can preserve sharp features, it lacks robustness to the mesh topology. The robust normal
filtering method [14] can also preserve sharp features, but it usually blurs fine details.

Recently, variational methods based on sparsity have been proved successful in image
restoration [15–17] for the edge-preserving property of them. These methods are inspired by the
emerging theories of sparse signal reconstruction and compressive sampling [18,19]. Inspired by these,
sparse optimization methods are introduced in mesh denoising [20–24]. He and Schaefer [20] extended
`0 minimization from images to surfaces, which induces sparsity on an edge-based operator. However,
the `0 minimization is NP-hard. The works [21,22] extended total variation (TV) minimization for
preserving sharp features of the mesh. To handle irregular sampling meshes corrupted by different
kinds of noise, Lu et al. [24] presented an `1-norm normal filtering method. Although the above
sparsity-based methods [20–24] can remove noise while preserving sharp features, they inevitably
suffer undesired staircase effects in smoothly curved regions. This problem is even worse for the
`0 minimization [20] for its high sparsity requirement. In order to overcome the staircase effects
introduced by these first order methods [20–24], Liu et al. [1] proposed a high order normal filtering
method, which can preserve sharp features and simultaneously prevent introducing staircase effects in
smooth regions. Unfortunately, when the noise level increases, the high order method [1] sometimes
smoothes sharp features.

More recently, researchers proposed some methods based on geometric priors. Assuming the
additive noise of the noisy mesh is Gaussian noise, a method based on compressed sensing was
proposed to decouple features and the noise [25]. However, if the noise level is high, it is difficult for
this method to distinguish features from the noise. With the assumption of geometric features are not
seriously corrupted by the noise, Lu et al. [23] first detected geometric features from a pre-filtered
mesh, and then they reconstructed the denoised result by the detected features. On the contrary,
without any assumptions about the underlying surface, a data-driven method has been employed for
mesh denoising [26]. The method first learns non-linear regression functions mapping filtered face
normal descriptors to face normals of the clean mesh, and then employs the learned functions for
computing the filtered face normals. This method can effectively remove noise and preserve geometric
features. Yet, it is very dependent on the completeness of the training data set.

As we can see, the above mentioned mesh denoising methods have their own limitations.
In summary, except the method [1], filtering methods and sparse optimization methods are either
preserve fine details or sharp features well. Moreover, without considering the noise type, these
methods are difficult to handle different kinds of noise, which often exist in the real data acquired by
consumer-grade scanners. To a certain extent, these problems will degrade the quality of denoising
results. To overcome the above limitations, we present a two-stage mesh denoising method. At the
first stage, we propose a variational normal filtering model based on a triple sparsity prior. After that,
we evolve the mesh to match the filtered face normals at the second stage. Taking a noisy mesh as the
input, our method can robustly handle various kinds of noise while preserving geometric features.

Specifically, the contributions of the paper are listed as follows:

• We present a novel normal filtering model with three sparsity terms. The model can recover
both sharp features and fine details and simultaneously prevent introducing unnatural effects in
smooth regions. Besides, the model is robust against different kinds of noise.

Sensors 2019, 19, 1001 3 of 16

• We develop an efficient algorithm based on variable-splitting and augmented Lagrangian method
for solving the problem.

• We demonstrate the performance of our denoising method on synthetic meshes and a variety of
scanned data produced by the laser scanner, Kinect v1, Kinect v2, and Kinect-fusion. Our method
outperforms compared methods for both synthetic meshes and real scanned data.

The rest of the paper is organized as follows. In Section 2, we first propose a variational normal
filtering model based on a triple sparsity prior. Then, an iterative algorithm using augmented Lagrange
method and variable-splitting technique is presented to solve the problem. Finally, according to
the filtered face normals, the vertex positions are updated by a robust vertex updating scheme.
The comparisons about our mesh denoising method and state-of-the-art methods are demonstrated in
Section 3. Section 4 concludes the paper.

2. Robust Mesh Denoising

Similarly to some previous mesh denoising methods [9,12–14,21], our method belongs to
two-stage methods, i.e., face normal filtering followed by updating vertices.

2.1. Normal Filtering

In this subsection, we first briefly give some necessary notations, and then introduce our normal
filtering method. A mesh of arbitrary topology with no degenerate triangles in R3 is represented
as M. The set of vertices, edges, and triangle faces of M are denoted as {vi : i = 1, 2, . . . , V},
{ei : i = 1, 2, . . . , E}, and {τi : i = 1, 2, . . . , T}, respectively. Here, V, E, and T are the numbers of
vertices, edges, and faces of M. Furthermore, we denote the 1-disk of vertex vi as D1(vi), which is the
set of triangles containing vi.

To filter the face normals of the noisy input, we propose a normal filtering model containing
three sparsity terms. It consists of a double sparsity prior on first order and second order variations of
the face normal field to recover sharp features, fine details, and smooth regions and a third sparsity
prior for handling different kinds of noise. Besides, we also present an iterative algorithm to solve the
proposed normal filtering model.

2.1.1. Normal Filtering Model

Given a noisy mesh Min, we represent its face normals as Nin. To filter the noise of Nin, we treat
the face normals N as a variable and propose the following normal filtering model:

min
N∈CN

{
αE f2 + βE f1 + γEtv + δEaho

}
, (1)

where CN = {N ∈ R3×T : ‖Nτ‖2 = 1, ∀τ}, α, β, γ, and δ are positive parameters used to balance
the four terms including one `2-norm term and three `1-norm terms. The first two terms are used to
control the degree of denoising, while the last two terms are used to regularize the noisy mesh for
noise removal and feature preserving. In the following, we will introduce the effects of these four
terms with Figure 1.

`2-norm fidelity term E f2 :
E f2 = ∑

τ

a(τ)‖Nτ −Nin
τ ‖2, (2)

where a(τ) is the area of triangle τ. The `2-norm fidelity term is used to make the solution to
harmonise well with the input face normals. It is well known that this least square fidelity term is used
for additive Gaussian noise. As we can see in the first pair of magnified views of Figure 1, within the
patch corrupted by Gaussian noise, this least square fidelity term can keep the solution of the face
normals (see the magnified view on the right) close to the input face normals (see the magnified view
on the left).

Sensors 2019, 19, 1001 4 of 16

1

2

3 4

Figure 1. The illustration of effects of the four terms in our normal filtering model. The first column
shows the noisy mesh (top) and the face normals of it (bottom). The second column shows the face
normals of four magnified patches of the noisy mesh, while the third column shows the face normals of
the corresponding magnified patches of the denoising result. The fourth column shows the denoising
result (top) and the face normals of it (bottom).

`1-norm fidelity term E f1 :
E f1 = ∑

τ

a(τ)‖Nτ −Nin
τ ‖. (3)

Similarly to the `2-norm fidelity term, the `1-norm fidelity term also encourages the solution to be
close to the input face normals. This `1-norm fidelity term is less well known. It can be used to avoid
the influence of outliers for impulsive noise. As we can see in the second pair of magnified views of
Figure 1, this `1-norm fidelity term encourages replacing the outliers with less dependence on their
exact value. In other words, this fidelity term make the regularization be robust against outliers for
impulsive noise.

TV regularization term Etv:
Etv = ∑

e
len(e)‖∇N|e‖,

where len(e) is the length of edge e, and ∇ is a discrete gradient operator defined over triangulated
meshes. This first order operator (gradient operator) is defined on each edge of the mesh, and its
computation can refer to Ref. [21].

The TV regularization has been proven very successful in image processing for its excellent
edge-preserving property [21]. We extend it to mesh denoising for preserving sharp features (including
edges and corners) while removing noise. As can be seen in Figure 1, the TV regularization term can
remove undesired geometric oscillations at the edges and corners of the mesh (see the third pair of
magnified views). Thus, this TV regularization term enables sharp features preserving while removing
noise. However, the TV regularization tends to optimize the face normal field to be a piecewise
constant field, which introduces undesired staircase effects in smooth regions [1]. These undesired
staircase effects will degrade the quality of denoising results.

Anisotropic high order regularization term Eaho:

Eaho = ∑
l

len(l)‖D(N)|l‖, (4)

Sensors 2019, 19, 1001 5 of 16

where len(l) is the length of line l connecting the barycenter with one vertex of triangle τ.
The anisotropic second order operator D is defined on each line of the mesh, which reads as follows

D(N)|l = we+(Nτ −Nτ+) + we−(Nτ −Nτ−),

where e+ and e− are two edges sharing the common vertex of l, τ+ is the triangle sharing e+ with τ,
and τ− is the triangle sharing e−. For more details about these descriptions, we refer readers to [1].
we+ and we− are positive weights defined as

we = exp(−‖Ne,1 −Ne,2‖2/2σ2), (5)

where Ne,1 and Ne,2 are the normals of two faces sharing the common edge e. We should point out that,
we discretize the second order operator D in an anisotropic manner. In contrast, the discretization
of the second order operator in Ref. [1] is isotropic. Compared to the discretization in Ref. [1], our
discretization has better feature-preserving property.

As mentioned before, the TV regularization term will introduce undesired staircase effects in
smooth regions. In order to overcome this problem, we use the anisotropic high order regularization (4)
to recover the smooth regions while preventing introducing the staircase effects; see the fourth pair of
magnified views of Figure 1 for example. Moreover, the anisotropic high order regularization will not
blur sharp features during the smoothing process.

2.1.2. Augmented Lagrangian Method for Solving the Normal Filtering Model

Because of the nondifferentiability and nonlinear constraints of the model (1), it is difficult to
directly solve it. Recently, variable-splitting and augmented Lagrangian method (ALM) have achieved
great success in `1 related optimization problems [1,21,22]. Here, we introduce three auxiliary variables
and employ ALM to solve the problem. Furthermore, since the weights (5) are estimated from the
noisy input, we dynamically update them at each iteration to improve the quality of denoising results.

We first introduce three auxiliary variables X, Y, and Z, and then reformulate the problem (1) as

min
N,X,Y,Z

{
αE f2 + βF(X) + γR(Y) + δQ(Z) + Φ(N)

}
,

s.t., X = N−Nin, Y = ∇N, Z = D(N),

where F(X) = ∑
τ

a(τ)‖Xτ‖, R(Y) = ∑
e

len(e)‖Ye‖, Q(Z) = ∑
l

len(l)‖Zl‖, and

Φ(N) =

{
0, N ∈ CN

+∞, N /∈ CN.

To solve the above constrained optimization problem, we define the following augmented
Lagrangian function

L(N, X, Y, Z; λx, λy, λz) =αE f2 + βF(X) + γR(Y) + δQ(Z) + Φ(N) + ∑
τ

a(τ)λx,τ ·
(

Xτ−(Nτ−Nin
τ)
)

+
rx

2 ∑
τ

a(τ)‖Xτ−(Nτ−Nin
τ)‖2 + ∑

e
len(e)λy,e ·(Ye−∇N|e)

+
ry

2 ∑
e

len(e)‖Ye−∇N|e‖2 + ∑
l

len(l)λz,l ·(Zl−D(N)|l)

+
rz

2 ∑
l

len(l)‖Zl−D(N)|l‖2,

(6)

Sensors 2019, 19, 1001 6 of 16

where λx = {λx,τ} ∈ R3×T, λy = {λy,e} ∈ R3×E, and λz = {λz,l} ∈ R3×L are three Lagrange
multipliers, and rx, ry, and rz are the positive penalty coefficients. Note that L is the number of
lines connecting the barycenter and one vertex of triangle τ. We solve the problem (6) by iteratively
solving four subproblems: the N-subproblem, X-subproblem, Y-subproblem, and Z-subproblem. In the
following, we discuss solutions to these four subproblems.

(1) N-subproblem: the sub-minimization problem of N can be written as

min
N

αE f2 + Φ(N) +
rx

2 ∑
τ

a(τ)‖Nτ−Nin
τ −(Xτ +

λx,τ

rx
)‖2 +

ry

2 ∑
e

len(e)‖∇N|e−(Ye +
λy,e

ry
)‖2

+
rz

2 ∑
l

len(l)‖D(N)|l−(Zl +
λz,l

rz
)‖2,

which is a quadratic optimization with the unit normal constraints Φ(N). We first fix the variables
(X, Y, and Z), and then use an approximate strategy to solve this problem. Specifically, we ignore the
term Φ(N) and solve the problem

min
N

αE f2 +
rx

2 ∑
τ

a(τ)‖Nτ −Nin
τ − (Xτ +

λx,τ

rx
)‖2 +

ry

2 ∑
e

len(e)‖∇N|e − (Ye +
λy,e

ry
)‖2

+
rz

2 ∑
l

len(l)‖D(N)|l − (Zl +
λz,l

rz
)‖2.

(7)

Then, we project the solution of the problem (7) to a unit sphere. Generally, the solution of the quadratic
optimization problem (7) can be easily achieved by sparse linear system, which can be solved by using
various numerical packages, such as Eigen, Taucs, and Math Kernel Library (MKL).

(2) X-subproblem: the sub-minimization problem of X is given as

min
X

βF(X) +
rx

2 ∑
τ

a(τ)‖Xτ − (Nτ−Nin
τ −

λx,τ

rx
)‖2. (8)

This problem is easy to solve due to the energy function (8) can be spatially decomposed, where the
minimization problem w.r.t. each face is performed individually. Thus, for each Xτ , we only need to
solve the following problem

min
Xτ

β‖Xτ‖+
rx

2
‖Xτ − (Nτ−Nin

τ −
λx,τ

rx
)‖2,

which has a closed form solution as

Xτ = Shrink(β, rx, Nτ−Nin
τ −

λx,τ

rx
), (9)

where the Shrink operator is defined as Shrink(u, v, w) = max(0, 1− u
v‖w‖)w.

(3) Y-subproblem: the sub-minimization problem of Y is given as

min
Y

γR(Y) +
ry

2 ∑
e

len(e)‖Ye − (∇N|e −
λy,e

ry
)‖2. (10)

The sub-problem of Y is separable and can be formulated as edge-by-edge problems. So, for each Ye,
we have the following simplified problem

min
Ye

γ‖Ye‖+
ry

2
‖Ye − (∇N|e −

λy,e

ry
)‖2,

Sensors 2019, 19, 1001 7 of 16

which has a closed form solution as

Ye = Shrink(γ, ry, ∇N|e −
λy,e

ry
). (11)

(4) Z-subproblem: the sub-minimization problem of Z can be formulated as

min
Z

δQ(Z) +
rz

2 ∑
l

len(l)‖Zl − (D(N)|l −
λz,l

rz
)‖2. (12)

Since the energy function (12) w.r.t. each line is individually performed, the subproblem (12) can be
solved independently. For each Zl , we solve the following problem

min
Zl

δ‖Zl‖+
rz

2
‖Zl − (D(N)|l −

λz,l

rz
)‖2,

which has a closed form solution

Zl = Shrink(δ, rz, D(N)|l −
λz,l

rz
). (13)

The entire procedure for solving the problem (6) is outlined in Algorithm 1. The algorithm
iteratively solves the above four subproblems and updates the Lagrange multipliers and weights (5).
Since the weights (5) estimated from noisy face normals are not accurate, we dynamically update them
in each iteration for preserving geometric features better.

Algorithm 1: ALM for Solving Normal Filtering Model (1)

Initialization: N−1 = X−1 = Y−1 = Z−1 = 0, λ0
x = λ0

y = λ0
z = 0, k = −1, K = 70, ε = 1e− 5;

repeat
Solve N-subproblem

For fixed (λk
x, λk

y, λk
z, Xk−1, Yk−1, Zk−1), compute Nk from (7);

Normalize Nk;
Solve X-subproblem

For fixed (λk
x, λk

y, λk
z, Yk−1, Zk−1, Nk), compute Xk from (9);

Solve Y-subproblem
For fixed (λk

x, λk
y, λk

z, Xk, Zk−1, Nk), compute Yk from (11);
Solve Z-subproblem

For fixed (λk
x, λk

y, λk
z, Xk, Yk, Nk), compute Zk from (13);

Update Lagrange multipliers
λk+1

x = λk
x + rx(Xk −Nk + Nin);

λk+1
y = λk

y + ry(Yk −∇Nk);
λk+1

z = λk
z + rz(Zk −D(Nk));

Update weights (5) according to Nk ;
until ∑

τ
area(τ)‖Nk

τ −Nk−1
τ ‖2 < ε or k ≥ K;

2.2. Robust Vertex Updating

After optimizing the face normals by the normal filtering model (1), the vertex positions of the
mesh should be updated to match the filtered face normals. To this end, we use a vertex updating
scheme presented by Liu et al. [1], which can robustly reconstruct the mesh without foldovers.
The method updates the vertex positions by minimizing the following problem

Sensors 2019, 19, 1001 8 of 16

min
v

{
E(v) =∑

τ=(vi ,vj ,vk)

(
Nτ−

(vj−vi)× (vk−vi)∥∥(vj−vi)×(vk−vi)
∥∥)2

+
η

2
||v− vin||2

}
, (14)

where (vi, vj, vk) are vertices of τ with counterclockwise order, vin is the vertex positions of the noisy
mesh and η is a small positive parameter.

We can reformulate the partial derivatives of (14) with respect to vi as follows:

∂Ev

∂vi
= ∑
τ∈D1(vi)

(Nτ−(Nτ · Nτ)Nτ)×(vj−vk) + η(vi − vin
i), (15)

whereNτ is the updating normal of τ according to the updated v (the derivation process of formula (15)
can refer to Ref. [1]). With gradient information calculated from (15) and the initial vertex positions,
we adopt Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [27] to solve the model (14). In each
iteration, BFGS algorithm uses the energy and gradient evaluated at the current and previous iterations.

3. Experiment Results and Comparisons

We have implemented our two-stage denoising method on a laptop with a Intel i7 core 2.6 GHZ
processor and 8GB RAM. All the tested methods in this paper have been implemented by C++ and
run on the same laptop. All of the meshes are rendered in a flat-shading model to show faceting effect.
We evaluate our method on various kinds of surfaces including CAD, non-CAD meshes, and real
scanned data captured by the laser scanner, Kinect v1, and Kinect v2.

3.1. Parameter Setting

As mentioned in Section 2.1, our normal filtering model (1) has four parameters: α, β, γ and
δ. The first two parameters are used to control the `2 + `1 fidelity terms. The last two are used to
balance the first order and second order regularization terms with the `2 + `1 fidelity terms. These four
parameters need to be tuned by users for producing satisfactory denoising results.

α and β are introduced to prevent the solution deviating far from the input. α is tuned to handle
additive Gaussian noise, and β is tuned to deal with additive impulsive and mixed noise. Due to the
influence of these two parameters are similar (both two are used to control the degree of denoising
results), we just remark β for an example. Figure 2 shows the results of different β with fixed other
parameters. We can see that the details of the mesh gradually appear when β increases. However, if β

is too large, the impulsive noise cannot be removed; see Figure 2e.
γ controls first order sparsity introduced by the TV regularization term of the model (1). Figure 3

illustrates results of different γ with fixed other parameters. We can see that, if α is zero or too small,
some sharp corners are blurred (see Figure 3b). On the contrary, too large α will sharpen some smooth
curves and flatten some smoothly curved regions; see Figure 3e. We should point out that, for each
input noisy mesh, there exist a range of γ for our method to give visually well denoising results;
see Figure 3c,d.

δ influences the smoothness of denoising results. Figure 4 shows the results of different δ with
fixed other parameters. As we can see in Figure 4b, if δ is zero or too small, the result suffers undesired
staircase effects. In contrast, if δ is too large, the result will be oversmoothed; see the blurred shallow
edge in Figure 4e. Again, for each noisy input, there exist a range of δ for our method producing
visually well results; see Figure 4c,d.

Sensors 2019, 19, 1001 9 of 16

(a) Noisy (b) β=40 (c) β=80 (d) β=150 (e) β=400

Figure 2. Denoising results for different β with fixed other parameters (α, γ, and δ). From left to right:
input noisy mesh (corrupted by Gaussian noise with standard deviation σ = 0.1 mean edge length and
15% of impulsive noise with standard deviation σ = 0.6 mean edge length) and results with different β.

(a) Noisy (b) γ=0 (c) γ=0.4 (d) γ=1.6 (e) γ=40

Figure 3. Denoising results for different γ with fixed other parameters (α, β, and δ). From left to right:
input noisy mesh (corrupted by Gaussian noise with standard deviation σ = 0.2 mean edge length)
and results with different γ.

(a) Noisy (b) δ=0 (c) δ=0.2 (d) δ=0.6 (e) δ=2.0

Figure 4. Denoising results for different δ with fixed other parameters (α, β, and γ). From left to right:
input noisy mesh (corrupted by Gaussian noise with standard deviation σ = 0.2 mean edge length)
and results with different δ.

3.2. Qualitative Comparisons

In this subsection, we compare our mesh denoising method (abbreviated as TS) with several
state-of-the-art methods including bilateral normal filtering [12], `0 minimization [20], TV normal
filtering [21], robust and high fidelity mesh denoising [14], and high order normal filtering [1], which
are abbreviated as localBF/globalBF, `0, TV, RHM, and HO, respectively. For all of the tested methods,
we carefully tune their parameters for producing visually best results.

In Figure 5, we compare the denoising results for CAD meshes containing both sharp features and
smooth regions. As we can see, all of the tested methods can effectively remove the noise. However,
both localBF and globalBF blur sharp features; see Figure 5g,h. This is because that bilateral filters
cannot distinguish sharp features from the noise when meshes are corrupted by the high level of noise.
On the contrary, the two sparse optimization methods (`0 and TV) can recover sharp features well. Yet,

Sensors 2019, 19, 1001 10 of 16

these two methods suffer staircase effects in smooth regions, see Figure 5e,f. Since `0 has the highest
sparsity requirement, it sometimes generates false edges in smooth regions. Besides, by using the
robust error norm, RHM also can preserve sharp features well (see Figure 5d). Although our method
TS and HO belong to sparse optimization methods, both of them can not only preserve sharp features
but also recover smooth regions; see Figure 5b,c. This is because these two methods use the second
order variations of the surface. Furthermore, due to the first order variations are also employed in
our method, it can preserve sharp features better than HO. As a result, visual comparisons in Figure 5
show that our method is noticeably better than the other six compared methods in terms of recovering
sharp features and smooth regions.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 5. Denoising results of Block and Joint (corrupted by Gaussian noise, standard deviation = 0.2
mean edge length). From left to right: (a) noisy meshes, denoising results produced by (b) our method
TS; (c) HO [1]; (d) RHM [14]; (e) TV [21]; (f) `0 [20]; (g) localBF [12]; and (h) globalBF [12], respectively.
The second and fourth rows are zoomed-in views.

In Figure 6, we demonstrate the comparison results for a non-CAD mesh with rich details. As we
can see in Figure 6d,g,h, the three filtering methods (RHM, localBF, and globalBF) blur fine details
more or less. In contrast, TV and `0 sharpen fine details in some extent; see Figure 6e,f. This situation
is more serious for `0 for its highest sparsity requirement. Moreover, both our method TS and HO
can produce visually satisfactory results; see Figure 6b,c. However, from quantitative comparisons
which will be presented in Section 3.3, we can see that the metric errors of our method are always
lower than those of HO. Thus, our method outperforms the other compared state-of-the-art methods
for non-CAD meshes with rich details.

To further testify the effectiveness of our method, we perform it on a variety of real scanned
meshes captured by the laser scanner and Kinect sensors. The comparison results for scanned data are
presented in the following paragraphs. It should be mentioned that the scanned data in Figures 8–10
are provided by Wang et al. [26].

Figure 7 demonstrates the denoising results for a mesh acquired by the laser scanner. As we can see,
our method TS, HO, TV, and globalBF can generate visually well results; see Figure 7b,c,e,h. `0 suffers
staircase effects in smooth regions shown in Figure 7f, while RHM and localBF blur geometric features
demonstrated in Figure 7d,g.

Sensors 2019, 19, 1001 11 of 16

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 6. Denoising results of Max-Planck (corrupted by Gaussian noise, standard deviation = 0.2
mean edge length). From left to right: (a) noisy mesh, denoising results produced by (b) our method
TS; (c) HO [1]; (d) RHM [14]; (e) TV [21]; (f) `0 [20]; (g) localBF [12]; and (h) globalBF [12], respectively.
The second row shows the zoomed-in view.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 7. Denoising results of Wilhelm acquired by the laser scanner. From left to right: (a) noisy mesh,
denoising results produced by (b) our method TS; (c) HO [1]; (d) RHM [14]; (e) TV [21]; (f) `0 [20];
(g) localBF [12]; and (h) globalBF [12], respectively. The second row shows the zoomed-in view.

Figures 8 and 9 demonstrate comparison results for single-frame meshes scanned by Kinect v1
and v2, respectively. As we can see in these two figures, except RHM which leaves some bumps in the
denoising results, all of the tested methods can effectively remove the noise. Besides, TV and `0 produce
staircase effects in smooth regions; see the fifth and sixth columns of Figures 8 and 9. This phenomenon
is more severe for `0. On the contrary, both localBF and globalBF blur some geometric features; see
the seventh and eighth columns of Figures 8 and 9. Apart from the above methods, both our method
TS and HO can produce visually well results; see the second and third columns of Figures 8 and 9.
However, from the quantitative comparisons demonstrated in Section 3.3, we can find that metric
errors of our method are always lower than those of HO. Figure 10 shows comparison results for the
meshes generated by Kinect-fusion process. We can observe that our method TS, HO, RHM, localBF,
and globalBF produce visually well results, whereas staircase effects still exist in the results produced
by `0 and TV. Again, from the quantitative comparisons shown in Section 3.3, we can see that metric
errors of our method are always lower than those of the other compared methods.

Sensors 2019, 19, 1001 12 of 16

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 8. Denoising results of Boy and Girl captured by Kinect v1. From left to right: (a) noisy meshes,
denoising results produced by (b) our method TS; (c) HO [1]; (d) RHM [14]; (e) TV [21]; (f) `0 [20];
(g) localBF [12]; and (h) globalBF [12], respectively.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 9. Denoising results of Big-Girl-01 and David captured by Kinect v2. From left to right: (a) noisy
meshes, denoising results produced by (b) our method TS; (c) HO [1]; (d) RHM [14]; (e) TV [21];
(f) `0 [20]; (g) localBF [12]; and (h) globalBF [12], respectively.

Sensors 2019, 19, 1001 13 of 16

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 10. Denoising results of Big-Girl and Cone generated by Kinect-fusion process. From left to
right: (a) noisy meshes, denoising results produced by (b) our method TS; (c) HO [1]; (d) RHM [14];
(e) TV [21]; (f) `0 [20]; (g) localBF [12]; and (h) globalBF [12], respectively.

3.3. Quantitative Comparisons

Besides the qualitative comparisons in the above subsection, the quantitative comparisons of our
method and the state-of-the-art methods are given out in Table 1. The information of the tested meshes
are listed in Table 2. Specifically, we use the mean square angular error (MSAE) and L2 vertex-based
error (Ev,2) to measure the fidelity of denoising results. These two error metrics are suggested in the
works [1,12,21]. As we can see in Table 1, for all of the tested methods, the values of MSAE of our
method are significantly smaller than all of the compared state-of-the-art methods. Moreover, in most
cases, the results produced by our method have the least values of Ev,2. Thus, our method outperforms
the other six typical methods quantitatively.

Table 1. Quantitative evaluation results of Figures 5–10 for all of the test methods.

Mesh MSAE(×10−3), Ev,2(×10−3); Costs (s)

TS HO RHM TV `0 localBF globalBF

Block 3.84, 1.63; 3.01 5.25, 2.00; 3.2 4.20, 3.20; 14.0 5.10, 1.82; 1.02 5.70, 2.47; 8.19 12.5, 3.22; 0.31 9.80, 2.74; 1.48
Joint 2.21, 1.34; 4.32 3.24, 1.78; 10.2 4.02, 2.38; 39.6 3.20, 2.24; 1.94 3.99, 1.93; 26.4 6.40, 2.52; 0.91 6.30, 3.55; 8.44
Max-Planck 18.5, 1.25; 66.3 26.8, 1.42; 23.2 25.6, 2.65; 99.0 29.0, 1.35; 11.9 33.0, 1.90; 56.6 25.8, 2.40; 1.98 20.2, 2.02; 3.94
Boy 57.9, 5.59; 10.4 62.3, 5.70; 7.39 65.13, 7.07; 33.6 71.1, 5.29; 5.69 63.6, 5.75; 13.9 61.6, 5.86; 0.48 73.1, 6.09; 0.85
Girl 80.4, 10.6; 22.6 82.5, 10.8; 13.1 85.0, 11.0; 56.2 85.1, 11.1; 11.0 84.4, 10.2; 41.9 80.9, 10.9; 1.11 81.3, 10.6; 2.53
Big-Girl-01 66.0, 10.3; 2.01 70.5, 11.2; 1.98 75.5, 12.5; 7.89 66.4, 10.6; 3.31 82.2, 10.6; 3.87 66.3, 11.8; 0.13 68.9, 10.5; 0.23
David 129, 8.45; 2.03 139, 8.85; 1.57 163, 11.2; 7.22 151, 8.80; 1.38 160, 9.19; 2.94 143, 8.80; 0.11 136, 9.54; 0.18
Big-Girl 36.4, 5.39; 16.0 39.1, 5.48; 12.5 39.8, 5.60; 58.8 38.7, 5.65; 6.68 39.6, 5.60; 19.9 36.6, 5.48; 1.08 36.5, 5.47; 2.38
Cone 53.1, 9.03; 12.2 53.5, 9.18; 7.29 63.0, 8.41; 33.7 55.4, 8.71; 6.42 54.6, 9.28; 8.73 56.7, 9.36; 0.68 58.2, 9.30; 1.15

Table 2. The numbers of vertices and faces of the meshes tested in Section 3.3.

Mesh Block Joint Max-Planck Boy Girl Big-Girl-01 David Big-Girl Cone

Vertices 8771 20,902 50,002 28,187 21,323 8698 7362 46,132 31,159
Faces 17,550 41,808 99,999 53,229 40,751 16,025 13,445 91,112 61,301

We also record CPU costs for all of the tested methods in Table 1. As we can see, RHM is the
slowest method, whereas localBF is the fastest one. Our method TS is slower than globalBF, TV, and
HO, but is faster than `0. Although our method is a little computationally intensive, its computational
time is still reasonable.

Sensors 2019, 19, 1001 14 of 16

3.4. Comparisons of `2 + `1 Fidelity with `2 and `1 Fidelities

In this subsection, we demonstrate effects of `2 + `1 fidelity in the model (1) for removing impulsive
and mixed noise. In order to show advantages of `2 + `1 fidelity, we visually and quantitatively
compare `2 + `1 fidelity with `2 and `1 fidelities by the following configurations. We directly run
the normal filtering model (1) for evaluating the performance of `2 + `1 fidelity. We set β = 0 in the
model (1) to evaluate the performance of `2 fidelity, while setting α = 0 in the model (1) to testify the
performance of `1 fidelity.

We show the denoising results produced by these three fidelities in Figure 11, and demonstrate the
corresponding quantitative comparison results in Table 3. Based on these, we can reach the following
conclusions. `2 fidelity cannot do a good job in removing impulsive and mixed noise; see Figure 11c.
In contrast, both `2 + `1 and `1 fidelities can efficiently remove large scale impulsive and mixed noise
while preserving geometric features; see Figure 11e,d. However, the results produced by `2 + `1 fidelity
have lower numerical errors than those produced by `1 fidelity. As a result, `2 + `1 fidelity outperforms
the other two fidelities.

Table 3. Quantitative evaluation results of Figure 11.

Mesh MSAE(×10−3), Ev,2(×10−3)

`2 Fidelity `1 Fidelity `1 + `2 Fidelity

Fandisk 31.3, 8.03 5.50, 0.93 4.24, 0.89
Bunny 33.4, 1.60 23.0, 2.47 22.3, 2.41

(a) (b) (c) (d) (e)

Figure 11. `1 + `2 fidelity vs. `2 and `1 fidelities. From left to right: (a) clean meshes; (b) noisy meshes,
denoising results produced by (c) `2 fidelity; (d) `1 fidelity; and (e) `1 + `2 fidelity. Fandisk in the first
row is corrupted with 10% of impulsive noise with scale of 0.7 mean edge length, while Bunny in the
third row is corrupted with 10% of impulsive noise with 0.6 edge length and Gaussian noise with
standard deviation σ = 0.15 mean edge length. The even rows are zoomed-in views.

4. Conclusions

In this paper, we propose a novel method to remove noise based on a triple sparsity prior.
The problem is effectively solved by augmented Lagrangian method and variable-splitting. We discuss

Sensors 2019, 19, 1001 15 of 16

and compare our method with six state-of-the-art methods in various aspects. The experiments show
that our method soundly outperforms the compared methods for both synthetic and scanned meshes
at reasonable CPU costs.

Author Contributions: Funding acquisition, Z.X. and Z.L.; Methodology, Z.L.; Project administration, S.Z.;
Software, J.L.; Supervision, Z.X. and Z.L.; Visualization, J.L.; Writing—original draft, S.Z.; Writing—review and
editing, Z.L.

Funding: This work was supported by the National Natural Science Foundation of China (Nos. 61702467,
41671400) and the National Key Research and Development Program (No. 2018YFB0505500).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

E f2 `2-norm fidelity term
E f1

`1-norm fidelity term
Etv TV (total variation) regularization term
Eaho Anisotropic high order regularization term
a(·) The area of (·)
len(·) The length of (·)
∇ Gradient operator
D Anisotropic second order operator

References

1. Liu, Z.; Lai, R.; Zhang, H.; Wu, C. Triangulated Surface Denoising using High Order Regularization with
Dynamic Weights. SIAM J. Sci. Comput. 2019, 41, 1–26.

2. Taubin, G. A Signal Processing Approach to Fair Surface Design. In Proceedings of the 22nd Annual
Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, 6–11 August 1995;
pp. 351–358.

3. Desbrun, M.; Meyer, M.; Schroder, P.; Barr, A.H. Implicit fairing of irregular meshes using diffusion
and curvature flow. In Proceedings of the 26th Annual Conference Computer Graphics and Interactive
Techniques, Los Angeles, CA, USA, 8–13 August 1999, pp. 317–324.

4. Desbrun, M.; Meyer, M.; Schroder, P.; Barr, A.H. Anisotropic Feature-Preserving Denoising of Height Fields
and Bivariate Data. In Proceedings of the 2000 Graphics Interface, Montréal, QC, Canada, 15–17 May 2000;
pp. 145–152.

5. Yagou, H.; Ohtake, Y.; Belyaev, A.G. Mesh smoothing via mean and median filtering applied to face
normals. In Proceedings of the Geometric Modeling and Processing, Washington, DC, USA, 10–12 July 2002;
pp. 124–131.

6. Tasdizen, T.; Whitaker, R.; Burchard, P.; Osher, S. Geometric Surface Processing via Normal Maps. ACM Trans.
Graph. 2003, 22, 1012–1033.

7. Bajaj, C.L.; Xu, G. Anisotropic diffusion of surfaces and functions on surfaces. ACM Trans. Graph. 2003,
22, 4–32.

8. Wang, C. Bilateral recovering of sharp edges on feature-insensitive sampled meshes. IEEE Trans. Vis. Comput.
Graph. 2006, 12, 629–639.

9. Sun, X.; Rosin, P.L.; Martin, R.; Langbein, F.C. Fast and effective feature-preserving mesh denoising.
IEEE Trans. Vis. Comput. Graph. 2007, 13, 925–938.

10. Jones, T.R.; d Durand, F.; Desbrun, M. Non-iterative, Feature-preserving Mesh Smoothing. ACM Trans.
Graph. 2003, 22, 943–949.

11. Fleishman, S.; Drori, I.; Cohen-Or, D. Bilateral mesh denoising. ACM Trans. Graph. 2003, 22, 950–953.
12. Zheng, Y.; Fu, H.; Au, O.K.C.; Tai, C.L. Bilateral Normal Filtering for Mesh Denoising. IEEE Trans. Vis.

Comput. Graph. 2011, 17, 1521–1530.
13. Zhang, W.; Deng, B.; Zhang, J.; Bouaziz, S.; Liu, L. Guided mesh normal filtering. Comput. Graph. Forum

2015, 34, 23–34.

Sensors 2019, 19, 1001 16 of 16

14. Yadav, S.K.; Reitebuch, U.; Polthier, K. Robust and High Fidelity Mesh Denoising. IEEE Trans. Vis.
Comput. Graph. 2018, 1, doi:10.1109/TVCG.2018.2828818.

15. Wang, Y.; Yang, J.; Yin, W.; Zhang, Y. A New Alternating Minimization Algorithm for Total Variation Image
Reconstruction. SIAM J. Imaging Sci. 2008, 1, 248–272.

16. Yang, J.; Yin, W.; Yin, Z.; Wang, Y. A Fast Algorithm for Edge-Preserving Variational Multichannel Image
Restoration. SIAM J. Imaging Sci. 2009, 2, 569–592.

17. Xu, L.; Lu, C.; Xu, Y.; Jia, J. Image Smoothing via `0 Gradient Minimization. ACM Trans. Graph. 2011,
30, 1–12.

18. Donoho, D.L.; Elad, M.; Temlyakov, V.N. Stable Recovery of Sparse Overcomplete Representations in the
Presence of Noise. IEEE Trans. Inf. Theor. 2006, 52, 6–18.

19. Candès, E.J.; Wakin, M.B.; Boyd, S.P. Enhancing Sparsity by Reweighted `1 Minimization. J. Fourier
Anal. Appl. 2008, 14, 877–905.

20. He, L.; Schaefer, S. Mesh denoising via `0 minimization. ACM Trans. Graph. 2013, 32, 1–8.
21. Zhang, H.; Wu, C.; Zhang, J.; Deng, J. Variational Mesh Denoising Using Total Variation and Piecewise

Constant Function Space. IEEE Trans. Vis. Comput. Graph. 2015, 21, 873–886.
22. Wu, X.; Zheng, J.; Cai, Y.; Fu, C.W. Mesh Denoising using Extended ROF Model with `1 Fidelity.

Comput. Graph. Forum 2015, 34, 35–45.
23. Lu, X.; Deng, Z.; Chen, W. A Robust Scheme for Feature-Preserving Mesh Denoising. IEEE Trans. Vis.

Comput. Graph. 2015, 22, 1181–1194.
24. Lu, X.; Chen, W.; Schaefer, S. Robust mesh denoising via vertex pre-filtering and `1-median normal filtering.

Comput. Aided Geom. Des. 2017, 54, 49–60.
25. Wang, R.; Yang, Z.; Liu, L.; Deng, J.; Chen, F. Decoupling noise and features via weighted `1-analysis

compressed sensing. ACM Trans. Graph. 2014, 33, 1–18.
26. Wang, P.; Liu, Y.; Tong, X. Mesh Denoising via Cascaded Normal Regression. ACM Trans. Graph. 2016,

35, 1–12.
27. Dennis, J.E. Quasi-Newton Methods, Motivation and Theory. Siam Rev. 1977, 19, 46–89.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Robust Mesh Denoising
	Normal Filtering
	Normal Filtering Model
	Augmented Lagrangian Method for Solving the Normal Filtering Model

	Robust Vertex Updating

	Experiment Results and Comparisons
	Parameter Setting
	Qualitative Comparisons
	Quantitative Comparisons
	Comparisons of 2+1 Fidelity with 2 and 1 Fidelities

	Conclusions
	References

