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ABSTRACT
Speckle reduction is a fundamental problem in coherent imaging 
systems. In this paper, to suppress the speckle in SAR images, we 
propose a novel truncated nonconvex nonsmooth model. It incorpo-
rates a truncated nonconvex regularization term and an I-divergence 
fidelity term. The truncated ,p norm (0< p< 1) regularization can 
better recover neat edges and simultaneously prevent contrast 
reduction artefact. The I-divergence fidelity term is used to suppress 
the multiplicative noise effectively. We also propose an efficient 
algorithm based on variable-splitting and alternating direction 
method of multipliers (ADMM) method to solve the model. 
Compared to state-of-the-art speckle suppression methods, intensive 
experimental results on a variety of SAR images show the superiority 
of the proposed method qualitatively and quantitatively.
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1. Introduction

Synthetic aperture radar (SAR) has attracted considerable attention because of its advantages, 
such as high spatial resolution and all-day, all-weather imaging capability. As coherent imaging 
systems, speckle noise inevitably appears in SAR images, which keeps us from interpreting 
valuable information such as texture (Yu et al. 2020a), edges (Yu et al. 2020b), and point targets 
(He et al. 2020). Therefore, despeckling is critical in SAR images. Over the years, state-of-the-art 
methods have been proposed for speckle suppression in SAR images. Generally, we classify 
existing despeckling methods into two major categories as follows.

1.1. Nonlocal filtering methods

Nonlocal filtering methods, e.g., nonlocal mean (NLM) (Buades, Coll, and Morel 2005), block- 
matching 3D (BM3D) (Dabov et al. 2007), overlapping group sparsity (Liu et al. 2015), and low- 
rank recovery (Dong, Shi, and Li 2013), are originally proposed to recover pattern similarity 
patches of natural images corrupted by additive Gaussian noise. Inspired by the great success 
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of these nonlocal methods for removing additive noise, extensive works extended these 
methods to suppress speckle noise in SAR images. An extension of NLM for despeckling is 
proposed by designing an efficient similarity measure and an iterative strategy (Deledalle, 
Denis, and Tupin 2009). The overlapping group sparsity regularization with the I-divergence 
data fidelity is used for despeckling (Liu et al. 2016). A SAR version of BM3D is presented by 
altering the original BM3D major steps for fitting the peculiarities of SAR images (Parrilli et al. 
2011). Low-rank methods based on nuclear norm minimization (Guan et al. 2018; Liu et al. 
2018; Guan et al. 2019; Chen et al. 2019) were also adopted in SAR images. As we can see, the 
self-similarity of the natural image is employed in these nonlocal-based methods, so the 
breakthrough performance usually is guaranteed in SAR images for despeckling. However, 
because of the attempt to recognize similar structures even when they are absent, some 
annoying artefacts appear in homogeneous regions of the despeckling result for these 
nonlocal methods.

1.2. Variational methods

Due to the good performance for preserving edges and recovering homogeneous regions, 
variational methods have been widely used in image processing. The aim of variational 
methods is to minimize some energy functions which include a data fitting and regularization 
term. A model based on maximum a posteriori (MAP), abbreviated as the AA model, is 
proposed to remove multiplicative noise well (Aubert and Aujol 2008). They adopted gradient 
descent approach to solve the AA model, whereas their approach cannot find the global 
minimum because of the nonconvex property of the AA model. In order to tackle this 
problem, many researchers have done a lot of works. Some studies introduced the logarithmic 
transformation of the AA model (Feng, Lei, and Gao 2014). However, due to the nonlinear 
property of the logarithmic transformation, the values in darkness of the image are expanded 
while those in the brightness are compressed. In order to tackle this problem, the classical 
convex I-divergence model is proposed (Steidl and Teuber 2010), which does not require the 
deficiency of the logarithmic transformation. To reduce staircase artefacts of TV regularization 
term, many high-order methods (Chan, Marquina, and Mulet 2000; Lysaker, Lundervold, and 
Tai 2003; Shi et al. 2019; Xiang et al. 2019) are proposed. A high-order total variation 
regularizer with the I-divergence data fitting term is proposed for despeckling in SAR images 
(Liu et al. 2013).

As we have seen, the aforementioned state-of-the-art methods have some problems in 
suppressing the speckle in SAR images or are less robust for preventing unnatural 
artefacts such as ghost artefacts, smooth brushstrokes, and contrast reduction in despeck-
ling results. To tackle these problems, we propose a novel truncated nonconvex non-
smooth variational model, consisting of a regularization and fidelity term, to suppress the 
speckle in SAR images. The ,p regularization term with a truncated function demonstrates 
good edge-preserving, homogeneity-recovering, and contrast-preserving abilities. The 
convex I-divergence fidelity term is robust for suppressing multiplicative noise. We also 
propose an efficient algorithm to solve the proposed model. Specifically, the main 
contributions of the paper are summarized as follows:
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● A novel truncated nonconvex nonsmooth variational model is presented for speckle 
suppression in SAR images. It is able to preserve neat edges, recover homogeneous 
regions well, and prevent contrast reduction effects.

● To solve the proposed truncated nonconvex model, an efficient algorithm is devel-
oped based on variable-splitting and alternating direction method of multipliers 
(ADMM) method.

● Compared to state-of-the-art methods, intensive experimental results show that the 
proposed method demonstrates favourably speckle suppression and contrast pre-
serving effects.

2. Methodology

We first define some basic function spaces and discrete associated operators in this 
section. Then, our truncated nonconvex nonsmooth model and the corresponding sol-
ving algorithm are proposed.

2.1. Basic notation

Assume the SAR image intensity u to be represented as an M� N matrix, we denote the 
Euclidean space R M�N as V . The discrete gradient operator is a mapping Ñ : V ! Q, where 
Q ¼ V � V . For u 2 V , Ñu is given by 

ðÑuÞi;j ¼ ððD
þ
x uÞi;j; ðD

þ
y uÞi;jÞ;

where i ¼ 1; . . . ;M; j ¼ 1; . . . ;N is the pixel position of the SAR image intensity u. Dþx and 
Dþy are respectively horizontal and vertical forward difference operators with periodic 
boundary condition. The inner product and norm in space V and Q are as follows: 

hu1; u2iV ¼ u1 � u2; k ukV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hu; uiV

p
; "u; u1; u2 2 V;

hp; qiQ ¼ hp1; q1iV þ hp2; q2iV ; k pkQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hp; piQ

p
; "p; q 2 Q:

2.2. Truncated ,p-regularized model and corresponding numerical algorithm

Speckle noise in SAR images is usually regarded as multiplicative noise, as follows: 

f ¼ uη; (1) 

where f 2 V is the observed SAR image intensity, u is the underlying true image intensity, 
and η is assumed as speckle noise that follows a Gamma distribution. The probability 
density function of η for the L-look SAR image is given by the following Gamma 
distribution: 

PðηÞ ¼
1

ΓðLÞ
LLηL� 1e� LηHðηÞ; (2) 

where Γ is the classical Gamma function, and H is a Heaviside function.
Given the observed SAR image intensity f 2 V , we proposed the following truncated 

nonconvex nonsmooth variational model 
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min
u2V
fαðu � f log uÞ þ

X

1�i�M;1�j�N

T ðk ðÑuÞi;jk
pÞg; (3) 

where k ðÑuÞi;jk
p ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðDþx uÞ2i;j þ ðDþy uÞ2i;j
q

Þ
p, α is a non-negative parameter balancing the 

influences of the regularization and fidelity term. p is a tuning parameter in the range of 
ð0; 1Þ, which is used to control the degree of nonconvexity of the ,p regularizer. T ðk
ðÑuÞi;jk

pÞ ¼ minðk ðÑuÞi;jk
p ; τpÞ is a truncated function with the threshold τ, which is a 

positive real parameter.
Because of the problem (3) is nonsmooth and nonconvex, it is challenging to directly 

solve it. The strategy of variable-splitting and ADMM is adopted to solve the nonconvex 
TVp � ,2 model successfully (Lanza, Morigi, and Sgallari 2016). Hence, using of the same 
strategy, we first introduce two auxiliary variables t and w and reformulate the problem 
(3) as: 

min
u2V;w2V;t2Q

f αðw � f log wÞ þ
P

1�i�M;1�j�N
T ðk ti;jk

pÞg:

s:t: w ¼ u; t ¼ Ñu
(4) 

The augmented Lagrangian equation of (4) is as follows: 

Lðu; t;w; λt; λwÞ ¼ αðw � f log wÞ þ
P

1�i�M;1�j�N
T ðk ti;jk

pÞ þ hλt; t � ÑuiQ þ hλw;w � uiV

þ rt
2 k t � Ñu k2

Q þ
rw
2 k w � u k2

V ;

(5) 

where rt; rw are positive penalty coefficients, and λt; λw are Lagrange multipliers. The 
primal variables update procedure can be separated into three subproblems. The alter-
nating minimization procedure for solving (3) is sketched in Algorithm 1. The iteration 
procedure terminates when one of the stopping criteria is satisfied. 

Algorithm 1 Solving truncated nonconvex nonsmooth variational model (3)
Input: f ; α; τ; p; rt; rw ;
Initialization: w0 ¼ f ; u0 ¼ f ; λ0

t ¼ 0; λ0
w ¼ 0; k ¼ 0; K ¼ 500; ε ¼ 1e� 4;

Repeat
(1)Solve t-subproblem
For fixed (uk; λk

t ), compute tkþ1 according to Algorithm 2;
(2)Solve w-subproblem
For fixed (uk; λk

w), compute wkþ1 according to (13);
(3)Solve u-subproblem
For fixed (tk;wk; λk

w; λk
t ),compute ukþ1 according to (15);

(4)Update Lagrange multiplier 

λkþ1
t ¼ λk

t þ rtðtkþ1 � Ñukþ1Þ;

λkþ1
w ¼ λk

w þ rwðwkþ1 � ukþ1Þ;

until k ukþ1 � uk k2
V < ε or k > K

Output: uk .

(1). t-subproblem. The t sub-minimization problem can be written as: 
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min
t2Q

X

1�i�M;1�j�N

T ðk ti;jk
pÞ þ

rt

2
k t � ðÑu �

λt

rt
Þ k2

Q : (6) 

Note that the problem (6) can be spatially decomposed in explicit component-wise form 
at each pixel. Thus, for each ti;j , we only need to solve the following problem: 

min
ti;j2Q

T ðk ti;jk
pÞ þ

rt

2
k ti;j � qi;jk

2; (7) 

with the constant vectors qi;j defined as: 

qi;j ¼ ðÑuÞi;j �
ðλtÞi;j

rt
: (8) 

And the solution of Equation (7) has been proven in (Wu, Liu, and Wen 2018). Here, we just 
give the result, which is expressed in Algorithm 2. For the sake of readability of Algorithm 
2, two functions are first defined as follows: 

χ1ðsÞ ¼ sp þ
rt

2
ðs� k qi;j kÞ

2
; χ2ðsÞ ¼ τp þ

rt

2
ðs� k qi;j kÞ

2
: (9) 

The first and second-order derivatives of χ1ðsÞ are as follows: 

χ
0

1ðsÞ ¼ psp� 1 þ rtðs� k qi;j kÞ; χ
0 0

1ðsÞ ¼ pðp � 1Þsp� 2 þ rt: (10) 

Assume sL is the root of χ
0 0

1ðsÞ ¼ 0, and we have sL ¼ ð
pðp� 1Þ

rt
Þ

1
2� p. 

Algorithm 2 Find the global minimizer of Equation (7)
Input: qi;j; τ; p; rt; sL;
(1) find the minimizer of s�1 ¼ min0�s�τfχ1ðsÞg.
if χ

0

1ðsLþÞ< 0 then
find the root �s of equation χ

0

1ðsÞ ¼ 0 in ½sL; k qi;j k�;
set the feasible set χ ¼ f0;minð�s; τÞg;
choose s�1 2 χ with s�1 ¼ mins2χ χ1ðsÞ;
else
set s�1 ¼ 0;
(2) find the minimizer of s�2 ¼ minkqi;jk�τ χ2ðsÞ.
set s�2 ¼ maxðτ; k qi;j kÞ;
(3) find the global minimizer s�.
Choose s� with 

s� ¼

s�1; χ1ðs
�
1Þ< χ2ðs

�
2Þ;

fs�1; s�2g; χ1ðs
�
1Þ ¼ χ2ðs

�
2Þ;

s�2; otherwise:

0

B
B
@

Output: ti;j ¼
s�
kqi;jk

qi;j .

(2) w-subproblem. The w-subproblem can be written as: 

min
w2V

αðw � f log wÞ þ hλw;w � uiV þ
rw

2
k w � u k2

V : (11) 
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Since the minimization problem in (11) is strictly convex, which can be easily solved by 
first-order optimality conditions, as below: 

w2 þ ð
α
rw
þ

λw

rw
� uÞw �

α
rw

f ¼ 0: (12) 

It is obvious that Equation (12) has an explicit solution as follows: 

w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ð α
rw

fÞ þ ð α
rw
þ λw

rw
� uÞ

2
q

� ð α
rw
þ λw

rw
� uÞ

2
: (13) 

(3) u-subproblem. The u-subproblem can be reformulated as: 

min
u2V

rt

2
k Ñu � ðt þ

λt

rt
Þ k2

Q þ
rw

2
k u � ðw þ

λw

rw
Þ k2

V : (14) 

As we can see, the problem (14) is a quadratic minimization problem. The problem has 
first-order optimality conditions. 

ÑT Ñuþ rw
rt

u ¼ ÑTðtk þ
λk

t
rt
Þ þ rw

rt
ðwk þ

λk
w

rw
Þ: (15) 

In this paper, the matrix Ñ is a difference operator with periodic boundary conditions. So 
ÑT Ñ is the block circulant matrix with circulant blocks, the coefficient matrix in (15) can be 
diagonalized by the 2D discrete Fourier transform (FFT implementation).

3. Numerical experiments

In this section, numerical experiments on two real SAR images are presented in Figures 1(a) 
and 2(a) to demonstrate the performance of our despeckling method. The two TerraSAR 
images are amplitude format with size 512 � 512, which can be accessed from https://www. 
intelligence-airbusds.com. The Band, Polarization Configuration, Polarization Mode, and 
Minimum Resolution of SAR1 and SAR2 are X, Single-Polarization, HH, and 5 m, respectively. 
The Imaging Mode of SAR1 and SAR2 are High Resolution SpotLight and StripMap, respec-
tively. SAR1 was obtained in Pima County, Arizona, USA on 23 December 2010, and SAR2 was 
obtained in Three Gorges Dam, Hubei, China on 21 October 2009. For testifying the abilities of 
preserving neat edges and recovering homogeneous regions, the indexes of equivalent 
number of looks (ENL) (Xie, Pierce, and Ulaby 2002) and edge preservation index (EPI) (Sattar 
et al. 1997) are adopted with SAR1 and SAR2. The ENL of the above two real SAR images were 

Figure 1. Despeckling results of SAR1. From left to right: noisy input, results produced by SARBM3D, 
PPBit, DCA, TGV, and TRTVpIdiv(α ¼ 11; p ¼ 0:4; τ ¼ 3), respectively. The zoomed views, showed in 
the second row.

REMOTE SENSING LETTERS 179

https://www.intelligence-airbusds.com
https://www.intelligence-airbusds.com


estimated from the homogenous regions in the blue rectangles in Figures 1(a) and 2(a). The 
range of EPI is [0,1], and EPI will be close to 1 when edges are preserved well during 
despeckling process. The ratio images are adopted in Figure 3 to measure the ability of the 
structure retaining (Meng et al. 2018). State-of-the-art approaches including DCA (Li, Lou, and 
Zeng 2016), TGV (Feng, Lei, and Gao 2014), PPBit (Deledalle, Denis, and Tupin 2009), and 
SARBM3D (Parrilli et al. 2011) are adopted to provide quantitative and visual comparisons. Our 
truncated nonconvex nonsmooth method is abbreviated as TRTVpIdiv. We have implemented 
TGV (Feng, Lei, and Gao 2014) according to the published paper using Matlab. For the other 
tested methods, we perform the code provided by their authors. All of the examples are run on 
a laptop with an Intel i5 core 2.6 GHz processor and 8GB RAM by using Matlab R2017b.

As we know, most variational methods have parameters, which need to be manually tuned. 
Our truncated nonconvex nonsmooth variational model (3) has three parameters: α, p, and τ. 
These three parameters have different roles and should be tuned to produce satisfactory 
results. Specifically, α is a tradeoff between the regularization and fidelity term. It is introduced 
to prevent the solution deviating far from the input. If α is too large, the noise cannot be 
removed cleanly; and if α is too small, the fine features will be oversmoothed. To produce 
satisfactory results, we empirically set α in the range of [0.1, 20] for L ¼ 1 and 2, and [10, 100] for 
L > 2. p is used to control the degree of nonconvexity of the ,p regularization of the proposed 
model (3). Too strong nonconvexity will sharpen features and result in staircase effects. In 

Figure 2. Despeckling results of SAR2. From left to right: noisy input, results produced by SARBM3D, 
PPBit, DCA, TGV, and TRTVpIdiv(α ¼ 12; p ¼ 0:5; τ ¼ 3), respectively. The zoomed views, showed in 
the second row.

Figure 3. First to second rows are the ratio images for SAR1 and SAR2, respectively. From left to right: 
ratio images produced by SARBM3D, PPBit, DCA, TGV, and TRTVpIdiv, respectively.
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contrast, too weak nonconvexity will yield a result with blurred features. Thus, p is suggested to 
be set in the range of [0.1, 0.6] for cartoon images, and [0.4, 0.9] for images including rich 
details. We use τ to improve the image contrast. We first set τ in the range of [1, 5], and then 
gradually increase it for higher values of ENL and EPI.

In Figure 1, we compare the despeckling results produced by the tested methods. For 
all of the test methods, we carefully tune their parameters for yielding the best despeck-
ling results. As we can see, all of the tested methods can effectively suppress speckle. 
However, DCA and TGV blur and flatten features more or less, especially for TGV for its 
second derivative property; see Figure 1(d,e). In Figure 3(c,d), the corresponding ratio 
images of DCA and TGV contain obvious structures, which means that they retain poor 
detail. Furthermore, PPBit suffers from brushstrokes, and SARBM3D undergoes ghost 
artefacts, in some homogeneous regions; see Figure 1(c,b). In the corresponding ratio 
images, PPBit, SARBM3D, and TRTVpIdiv all retain structure well; see the first row of Figure 
3. In contrast, our method TRTVpIdiv can preserve clearer edges and simultaneously 
suppress the unnatural effects; see Figure 1(f). As we can see in Table 1, for the tested 
image SAR1, our method TRTVpIdiv outperforms the other compared methods. The 
values of ENL and EPI are consistently higher than those of the other compared methods, 
which show that the results produced by ours are more faithful to the clean images.

In Figure 2, we show and compare results for a real SAR image consisting of sharp 
edges and various homogeneous regions. Again, as can be seen, all the tested methods 
can remove the noise at this situation. However, DCA and TGV blur edges and homo-
geneous regions to varying degrees; see the corresponding zoomed views of Figure 2. 
Moreover, SARBM3D produces ghost artefacts in some homogeneous regions. In the 
corresponding ratio images, our method TRTVpIdiv shows the best result for retaining 
structures; see the second row of Figure 3. Again, our truncated method obtains better 
recovery with higher ENL and EPI values in Table 1. One important thing can be observed 
that, compared to the other methods, TRTVpIdiv yields more attractive results with edge 
preserving, homogeneous region smoothing, and contrast recovery.

In Table 1, the computation time of all the tested methods with the real SAR images are listed. 
Due to the multi-patch collaborative mechanism, the tested nonlocal methods (PPBit and 
SARBM3D) are computationally intensive. Compared to those nonlocal-based methods, the 
variational methods are less time-consuming, and our method TRTVpIdiv is the quickest one 
among these variational methods. The proposed method not only obtained better performance 
in suppressing speckle but also got the smallest computational complexity as well.

The above visual comparisons on the real SAR images show that our method TRTVpIdiv 
can produce better despeckling results than the compared methods in most cases. 
Specifically, our method TRTVpIdiv is noticeably better than all of the compared ones in 
terms of feature preserving and contrast recovery, especially in the case of the images 
including sharp features and homogeneous regions.

Table 1. Numerical evaluation results of SAR1 and SAR2.
Index Noisy SARBM3D PPBit DCA TGV TRTVp

SAR1 ENL 20.30 80.43 205.09 177.32 157.68 224.75
EPI 1 0.62 0.69 0.54 0.30 0.75
Time(s) – 126.24 63.49 36.12 40.98 15.25

SAR2 ENL 22.64 241.70 344.39 304.46 163.97 396.68
EPI 1 0.50 0.64 0.42 0.33 0.66
Time(s) – 127.24 65.89 38.04 51.74 10.12
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4. Conclusion

In this paper, we introduce a novel truncated nonconvex variational model for speckle suppression 
in SAR images. Compared to the traditional convex or smoothing model, the proposed model is 
more robust for recovering neat edges and preserving the SAR image contrast. An effective 
algorithm based on variable-splitting and ADMM is proposed to solve the model. Various 
numerical experiments show the efficiency of the proposed speckle suppression method.

Besides the speckle reduction application, we expect to extend our work to handle the 
wider class of problems, such as edge detection, texture and structure image decomposi-
tion, SAR images reconstruction.
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