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Abstract The geodesic curvature flow is an important concept in Riemannian geometry.
The flow with level set formulation has many applications in image processing, computer
vision, material sciences, etc. The existing discretizations on triangulated surfaces are based
on either finite volume method or finite element method with piecewise linear function
space, which are suitable for vertex-based two-phase problems. The contour (zero level
set) in existing methods passes through triangles of the mesh. However, in some graphic
applications, such as mesh segmentation (to divide a whole mesh into several sub-meshes
without ambiguous triangular stripes), the cutting contour is needed to be along the edges
of the mesh. Moreover, multi-phase segmentation by a single level set function is a difficult
problem for a long time. In this paper, we try to tackle these two problems. We propose a new
discretization which has simpler formulation and more sparse coefficient matrix. We prove
the existence and uniqueness, regularization behavior and maximum–minimum principle of
our discrete flow. Therein the maximum–minimum principal has not been presented before.
Lots of experiments show that, the limit of the flow would be a piecewise constant solution
with ’discontinuity set’ to be the closed geodesics of the surface. We therefore propose a
constrained discrete geodesic curvature flow, which is also analyzed theoretically. The linear
system of the constrained flow can be equivalently reformulated into a much smaller one
(especially in the narrow band algorithm), which dramatically reduces the computation cost.
Combined with a narrow band algorithm, the constrained flow with topologically correct
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initializations (easy to be got by simple existing methods or manual inputs) yields a multi-
phase segmentation method by a single level set function. We test our two flows in closed
curve evolution and multi-region segmentation applications. The numerical experiments are
given to demonstrate the effectiveness.

Keywords Geodesic curvature flow · Level set · Triangulated surfaces · Curve evolution ·
Multi-phase segmentation

1 Introduction

The geodesic curvature flow, also known as curve shortening flow, plays important roles in
both theory and applications.

It is a crucial tool [20] of the closed geodesic theory, which is a fundamental part of
Riemannian geometry. Since the curve is supposed to evolve under the geodesic curvature
dependent velocity, it is expected to find closed geodesics on manifolds. Right now it is
clear that, on Euclidean plane, any simple curve (either convex or nonconvex) converges to
a round point in a finite time by the curve shortening flow, [15,17,19]. The behavior of the
geodesic curvature flow on surfaces is more interesting [16,20,28,31]. Even the existence
and uniqueness of solutions are proved under particular assumptions. Besides, the flow has
limit curves with diverse shapes. Unlike the planar case, a closed initial curve on a manifold
evolves into one of two shapes under the geodesic curvature flow. It may disappear or become
closed geodesic(s). Moreover, geodesics on manifolds can be stable or unstable [31].

In applications, the flow is usually written in level set [32] formulations. It is applied
extensively in image processing, computer vision, material sciences, etc. The flow gives front
propagation with a curvature-dependent speed in multi-phase physical simulations and mate-
rial science [32]. In image processing, morphological image scale-spaces [23] constructed
by this flow provide some useful scale-space properties such as the so-called inclusion order
preserving [13], which are not held by other image scale-spaces. It is also used to detect
image edges [5].

Due to the interesting behavior of the flow on surfaces, several approaches have been pro-
posed in recent years to compute and simulate it with applications on surfaces. In [10], the
authors studied this flow by using standard methods for manifolds, i.e., cutting the interested
manifold into a set of charts and solving geodesic curvature flows on these charts separately.
Various possible cases of final curves were illustrated. Cheng et al. [8] presented numerical
methods for curve evolution over implicit surfaces, where the flow equation is solved in a
narrow band of 3D Cartesian grids near the surface. In [24,39], Kimmel et.al. considered
the geodesic curvature flow on parametric manifolds for bending invariant scale-space con-
cepts and edge detection of images painted on surfaces. Detailed numerical schemes were
provided.Wu and Tai proposed in [42] a discrete geodesic curvature flow on triangulated sur-
faces by using FVM with piecewise linear function space. Several theoretical properties and
applications of the discrete flow were also presented. Later on, the discrete flow in [42] was
improved in [44] for interactive mesh segmentation. In [25], Lai et al. used FEM to discretize
the flow on triangulated surfaces and showed successful two-region surface segmentation
application for medical data.

In many computer graphic applications, such as mesh segmentation (to divide a whole
mesh into several sub-meshes), the contour is needed to be along the edges of the mesh.
However, the contour (zero level set) of the flows [25,42] discretized in piecewise linear
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Fig. 1 Applying the geodesic curvature flow to partition the Bunny surface into 2 parts. a the result of discrete
flow in piecewise linear function space, where the cutting contour (zero level set) is plotted in blue; b the result
of discrete flow in piecewise constant function space, where the cutting contour is plotted in blue. As can be
seen, the cutting contour in (a) passes through a strip of triangles plotted in red, while the cutting contour in
(b) is along a set of triangle edges. To partition the surface mesh into 2 sub-meshes (while maintaining the
same triangulation), a postprocessing step is needed to classify the triangles in the red strip in (a). However,
this postprocessing step is avoided in (b) (Color figure online)

Fig. 2 Our constrained geodesic curvature flow and narrow band algorithm applied to segment the Torus
surface. a the initial contours plotted in blue and the final contours in red; b the segmentation result. This
surface cannot be segmented to three parts by conventional level set method, since the three contours cannot
be represented by the zero level set of a function on the Torus (Color figure online)

function space usually passes through triangles of the mesh, which results in generating
ambiguous triangular stripe region for surface segmentation application (see Fig. 1a). More-
over, multi-phase segmentation by a single level set function is a difficult problem for a long
time. See Fig. 2 for an example. If to segment the Torus surface to three parts, it is impossible
to represent the cutting contours by the zero level set of a function.

In this paper, we try to tackle above two problems. We first propose a new numeri-
cal method to discretize geodesic curvature flow on triangulated surfaces, which directly
evolves curves on the triangle edges and thus avoids the postprocessing step to classify or
partition the triangles in the undetermined strips; see Fig. 1b. With a different technique in
existing methods, our method has several advantages. It has simpler formulation and more
sparse coefficient matrix. We can prove not only the existence, uniqueness, and regulariza-
tion behavior, but also maximum–minimum principal, among which the latest has not been
presented in all previous methods. Lots of experiments show that, the limit of the proposed
discrete flow would be a piecewise constant solution with ’discontinuity set’ to be the closed
geodesics of the surface. We therefore propose a constrained geodesic curvature flow, which
is also analyzed theoretically. To speedup the constrained flow, we present a new narrow band
algorithm, showing multi-phase segmentation application with a single level set function on
surfaces; see Fig. 2 and others in Sect. 5.3.

It has been for a long time a difficult problem for multi-phase segmentation using a
single level set function. Conventional level set method [32] embedded in active contour
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models [4–7] segment an image into two regions. Later several scientists proposed to use
multiple level set functions for multi-phase segmentation or tracking [35,41,45]. In [3,40],
a hierarchical splitting technique was presented, which iteratively splits regions obtained
by traditional level set approach. Very recently, there are a few works trying to tackle this
problem. [27] uses an augmented Lagrangian optimization to evolve the level set function
under some special constraints, thus implementing multi-phase segmentation using a single
level set function. The method avoids the regularization in Dirac function, but involves
high order polynomial constraints yielding a non-convex optimization and the computational
un-stability of the coefficient matrix. The method need good initializations to get correct
segmentation results. In [12], a multi-region segmentation approach by a single non-negative
level set function was proposed, which utilizes the Voronoi implicit interfacemethod [36,37].
The key of this method is an accurate and fast computation of unsigned distance function
through Eikonal equation at each evolution step, together with two evolving ε-level sets to
encapsulate the segmentation contours. In contrast, we design in this paper a multi-phase
segmentation method with a single level set function by constrained geodesic curvature flow
and a narrow band algorithm. As long as the initialization has correct topology, our method
can obtain good segmentation results. Ourmethod avoids to solve the Eikonal equationwhich
is not a trivial work [14,34] on triangulated surfaces. It does not need to solve a non-convex
optimization problem involving high order polynomial constraints. Besides, our algorithm is
easy to implement on triangulated meshes.

This paper is organized as follows. In Sect. 2, we review the conventional level set for-
mulation of geodesic curvature flow on smooth 2-manifolds. In Sect. 3, we propose a new
discrete geodesic curvature flow in piecewise constant function space with theoretical analy-
sis, and compare it with the discrete flow in [42]. By the observation of a large number of
experiments and the discussion at the end of Sect. 3, we propose a novel constrained geo-
desic curvature flow in Sect. 4 with theoretical analysis. The system of the constrained flow
can be equivalently reformulated into a much smaller one, which dramatically reduces the
computation cost. A new narrow band algorithm will also be presented to combine the con-
strained geodesic curvature flow for multi-phase segmentation. In Sect. 5, the applications of
two discrete flows in closed curve evolution and multi-phase segmentation on triangulated
surfaces are discussed. Section 6 concludes the paper.

2 Geodesic Curvature Flow Equation Over Smooth 2-Manifolds

In this section, we review geodesic curvature flow equation with a level set formulation [32]
over smooth 2-manifolds.

Assume thatM ⊂ R
3 is a 2-dimensional smoothmanifold and∇, div are intrinsic gradient

and divergence operators on M. Suppose that C ⊂ M is a curve defined on M. Assume
that w : M → R

+ is a positive scalar function serving as a weight, which depends on
applications. Then, the weighted length of C is

E(C) =
∫
C

wdl. (1)

By the gradient descent method, we use the Euler–Lagrange equation to minimize (1) (see
[5,39] for details). Then, we have

Ct = (κw − 〈∇w,N 〉)N , (2)
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where t is an artificial time parameter, κ is the geodesic curvature and N is the unit normal
of curve C. This equation evolves the initial curve C0 towards a local minima of the weighted
length of C.

Suppose that φ : M → R is a flow equation and C can be seen as the zero level set
of φ. According to the work of Osher and Sethian [32], the curve evolution Eq. (2) can be
reformulated into the level set form as follows:

⎧⎪⎪⎨
⎪⎪⎩

φt = |∇φ|div
(

w
∇φ√

|∇φ|2+β

)

∂φ
∂n

∣∣
∂M = 0

φ(t = 0) = φ0,

(3)

where β is a small positive number introduced to avoid division by zero (we use β = 0.00001
in all the examples), and φ0 is a given initial value of the flow function. The level set method,
proposed by Osher and Sethian, converts the curve shortening problem into the problem
of finding the steady solution (φt = 0) of (3). We mention that, in Euclidean space, this
derivation of the evolution equation can be found in Sethian’s book [38].

As mentioned, several numerical methods of this flow on surfaces have been proposed
during the last few years [8,25,39,42]. In next section, we propose a new discretization
on triangulated surfaces with a simpler formulation and more theoretical discussions than
previous ones.

3 Discretization and Analysis of Geodesic Curvature Flow Over
Triangulated Surfaces

3.1 Notation

Assume that M is a compact triangulated surface of arbitrary topology with no degenerate
triangles in R

3. The set of vertices, edges and triangles of M are denoted as {vi : i =
0, 1, . . . ,V − 1}, {ei : i = 0, 1, . . . ,E − 1} and {τi : i = 0, 1, . . . ,T − 1}, respectively.
Here V, E and T are the numbers of vertices, edges and triangles of the triangulated surface,
respectively. If v is an endpoint of an edge e, then we denote it as v ≺ e. Similarly, that e
is an edge of a triangle τ is denoted as e ≺ τ ; that v is a vertex of a triangle τ is denoted
as v ≺ τ . Let D1(i) be the 1-ring of the triangle τi , which are the triangles sharing some
common edges with τi .

We further introduce the relative orientation of an edge e to a triangle τ , which is denoted
by sgn(e, τ ) as follows. Assume first that all the triangles are with anticlockwise orientation
and all edges are with fixed orientations which are randomly chosen. For an edge e ≺ τ ,
if the orientation of e is consistent with the orientation of τ , then sgn(e, τ ) = 1; otherwise
sgn(e, τ ) = −1.

3.2 Piecewise Constant Function Space and Operators

In this subsection, we introduce piecewise constant function space, which is used to describe
scalar piecewise constant data field.We define the space VM = R

T,which is isomorphic to the
piecewise constant function space over M . For example, u = (u0, u1, . . . , uT−1) ∈ VM . It
means that the value of u restricted on the triangle τ is uτ , which is written as u|τ sometimes.
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For any u1, u2, u ∈ VM , we define the inner product and norm as follows:

(u1, u2)VM =
∑
τ

u1|τu2|τ sτ , ‖u‖VM = √
(u, u)VM , (4)

where sτ is the area of triangle τ .
For any u ∈ VM , we define the jump of u over an edge e as

[u]e =
{ ∑

τ,e≺τ

u|τ sgn(e, τ ), e � ∂M

0, e ⊆ ∂M
. (5)

Due to the piecewise constant function space, it is natural to define the gradient operator
by

∇ : u → ∇u, ∇u|e = [u]e, ∀e, for u ∈ VM .

It can be regarded as the signed amplitude of the usual vector definition of the gradient.
However, in real computation this simplified definition is enough. In the vector definition,
one need choose a tangent space at an edge. This tangent space (at an edge) is ambiguous. A
discussion on this can be found in [43].

We then denote the range of ∇ by QM , i.e., QM = Range(∇). The QM space is equipped
with the following inner product and norm:

(p1, p2)QM =
∑
e

p1|e p2|ele, ‖p‖QM = √
(p, p)QM , (6)

for p1, p2, p ∈ QM , where le is the length of the edge e.
It is straightforward to derive the adjoint operator of −∇, say, the divergence operator

div : QM → VM , by using the above inner products in VM and QM . For p ∈ QM , divp is
given by

(divp)|τ = − 1

sτ

∑
e≺τ

p|esgn(e, τ )le,∀τ. (7)

3.3 Discrete Geodesic Curvature Flow

We approximate the geodesic curvature flow Eq. (3) at each face of M . For one face τi , it
reads

φt |τi = |(∇φ)|τi |
(
div

(
w

∇φ√|∇φ|2 + β

))
|τi . (8)

After approximating |(∇φ)|τi | outside the divergence operator by the average of the gra-
dient on each edge of face τi , we have

φt |τi =
∑
e≺τi

|[φ]e|le
∑
e≺τi

le

(
div

(
w

∇φ√|∇φ|2 + β

))
|τi , (9)

where [φ]e = ∇φ|e (see gradient operator (5)). The divergence operator (7) gives(
div

(
w

∇φ√|∇φ|2 + β

))
|τi = − 1

sτi

∑
e≺τi

wele√|[φ]e|2 + β
([φ]esgn(e, τi )) ,

where we is a weight function defined on each edge. According to (5), we verify that
[φ]esgn(e, τi ) = (φi sgn(e, τi ) + φ j sgn(e, τ j ))sgn(e, τi ) = φi − φ j , where e = τi ∩ τ j
and j ∈ D1(i).
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Therefore, the semi-implicit discretization of (9) can be written as

φn+1
i − φn

i

Δt
= − 1

sτi

∑
e≺τi

|[φn]e|le
∑
e≺τi

le

∑
e=τi∩τ j ,
j∈D1(i)

wele√|[φn]e|2 + β

(
φn+1
i − φn+1

j

)
. (10)

Denoting Φ(n) = (φn
0 , φn

1 , . . . , φn
T−1)

′, then Eq. (10) is formulated into the following
matrix form: (

S + ΔtG(Φ(n))H(Φ(n))
)

Φ(n+1) = SΦ(n),

where S = diag(sτ0 , sτ1 , . . . , sτT−1),

G(Φ(n)) = diag

⎛
⎜⎝

∑
e≺τ0

|[φn]e|le
∑
e≺τ0

le
,

∑
e≺τ1

|[φn]e|le
∑
e≺τ1

le
, . . . ,

∑
e≺τT−1

|[φn]e|le
∑

e≺τT−1

le

⎞
⎟⎠

are two diagonal matrices and H(Φ(n)) = hi j with

hi j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
e≺τi

wele√|[φn]e|2 + β
, j = i

− wele√|[φn]e|2 + β
, j ∈ D1(i), where e = τi ∩ τ j

0, others.

(11)

LetΦ0 be an initial flow function. Given a fixed time stepΔt , we can calculate a sequence
{Φ(n), n = 0, 1, 2, . . . .} as follows:

{
(S + ΔtG(Φ(n))H(Φ(n)))Φ(n+1) = SΦ(n)

Φ(0) = Φ0.
(12)

For the convenience of description, we call the sequence {Φ(n), n = 0, 1, 2, . . .} computed
by (12) as the discrete geodesic curvature flow of the initial flow function Φ0. Compared to
previous discretizations, our discrete flowhas simpler formulation andmore sparse coefficient
matrices at each iteration.

Remark We should point out that the concept of the discrete geodesic curvature flow can
also be defined for time sequences with variable time stepsΔt . For convenience we use fixed
time step Δt in this paper.

3.4 Analysis of the Discrete Geodesic Curvature Flow

In this subsection, we present several fundamental theoretical aspects of discrete geo-
desic curvature flow. They include existence and uniqueness, regularization behavior and
maximum–minimum principle. The assumption of no degenerate triangles gives the bound-
edness of the discrete curvatures [30] and the nonzero triangle areas. These facts, together
with the boundedness of the coefficients defined in (11), help to establish these theoretical
results. Starting from the following three lemmas, one can verify the existence and unique-
ness, as well as the regularization behavior, by the techniques similar to [42]. Meanwhile,
the maximum–minimum principal will be presented. To the best of our knowledge, the
maximum–minimum principal is not be presented in any existing methods.
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Lemma 1 Assume that D is a diagonalmatrix with nonnegative elements and A is symmetric
positive semidefinite. Then, the principal minors of the matrix DA are all nonnegative.

Proof Let D = diag(d1, d2, . . . , dT). The assertion follows immediately from

(DA)

(
i1 i2 . . . ir
i1 i2 . . . ir

)
= di1 . . . dir A

(
i1 i2 . . . ir
i1 i2 . . . ir

)
, (13)

for any 1 ≤ i1 < . . . < ir ≤ T. ��
Lemma 2 Assume A is a T × T matrix and λ is a constant. Then,

det (λI + A) = λT +
∑

1≤k≤T

λT−k
∑

i1<i2<...<ik

A

(
i1 i2 . . . ik
i1 i2 . . . ik

)
, (14)

where I is an identity matrix and

A

(
i1 i2 . . . ik
i1 i2 . . . ik

)

is a principal minor of A.

Proof This can be proved in a way similar to that given in ([11], pp.180–182). ��
Lemma 3 The matrix H(Φ(n)) with elements defined via (11) is symmetric and positive
semidefinite with rank(H) = T − 1.

Proof Since hi j = h ji , the symmetry of H(Φ(n)) is obvious. On the other hand, for any
vector v, we have

v′H(Φ(n))v =
∑
i j

hi jviv j =
∑
i

hiiv
2
i +

∑
i

∑
j∈D1(i)

hi jviv j

=
∑
i

∑
e≺τi

wele√|[φn]e|2 + β
v2i −

∑
i

∑
e=τi∩τ j ,
j∈D1(i)

wele√|[φn]e|2 + β
viv j

=
∑

e=τi∩τ j

wele√|[φn]e|2 + β
(v2i + v2j ) − 2

∑
e=τi∩τ j

wele√|[φn]e|2 + β
viv j

=
∑

e=τi∩τ j

wele√|[φn]e|2 + β
(vi − v j )

2 ≥ 0.

Therefore, the matrix H(Φ(n)) is positive semidefinite. Moreover, the positive definiteness
of we and le indicates that rank(H) = T − 1. ��
Theorem 1 (existence and uniqueness) For any initial value Φ0, with a fixed time step Δt
and t0 = 0, there exists a unique discrete geodesic curvature flow {Φ(n), n = 0, 1, 2, . . .}.
Proof In fact, we only need to prove the coefficient matrix of the system (12) is invertible.
We compute the determinant of (S + ΔtG(Φ(n))H(Φ(n))). Let

λi =
∑

e≺τi
|[φ]ne |le∑

e≺τi
le

, i = 0, 1, . . . ,T − 1,
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we have
det(S + ΔtG(Φ(n))H(Φ(n)))

= det(S + Δt diag(λ0, λ1, . . . , λT−1)H(Φ(n))

= det(S) · det(I + Δt diag(
λ0

s0
,
λ1

s1
, . . . ,

λT−1

sT−1
)H(Φ(n)))

:= det(S) · det(I + ΛH)

= det(S) ·
⎛
⎝1 +

∑
1≤k≤T

∑
i1<i2<...<ik

ΛH

(
i1 i2 . . . ik
i1 i2 . . . ik

)⎞
⎠

> 0,

by Lemmas 1, 2 and 3. This proves the invertibility of the coefficient matrix of the system
(12). ��
Theorem 2 (regularization behavior) For the flow function Φ(t (n)), we assume that L1 =
{i |φn

j = φn
i , j ∈ D1(i)} and L2 = {0, 1, . . . ,T − 1}\L1 are two index sets. Then, (I +

Δt S−1G(Φ(n))H(Φ(n)))−1 has eigenvalues 0 < μ0, μ1, . . . , μT−1 ≤ 1with corresponding
eigenvectors {bi = bi,0, bi,1, . . . , bi,T−1}, where i = 0, 1, . . . ,T − 1, which is complete.
Moreover,

1. If L1 is empty, then the largest eigenvalue μmax = 1 with a unique eigenvector
(1, 1, . . . , 1);

2. If L1 is nonempty, then for all i ∈ L1, μi = 1 is the eigenvalue with (1, 1, . . . , 1) as
one of the corresponding eigenvectors; for i ∈ L2, 0 < μi < 1 and bi j = 0, j ∈ L1 in its
corresponding eigenvector bi .

Proof Let

D = S−1G(Φ(n)),

which is a diagonal matrix with nonnegative elements.
1. Since L1 is empty, it is obvious that G is invertible. We then have

S−1G(Φ(n))H(Φ(n)) = DH = √
D

√
DH

∼ (
√
D)−1

√
D

√
DH

√
D

= √
DH

√
D,

implying that DH is similar to a symmetric matrix
√
DH

√
D. Therefore, I + Δt S−1

G(Φ(n))H(Φ(n)) is similar to a symmetric matrix, and its inverse. This imply that all the
eigenvalues of I + Δt S−1G(Φ(n))H(Φ(n)) are real and the set of eigenvectors is complete.
On the other hand, as H = (

√
D)−1

√
DH

√
D(

√
D)−1, H and

√
DH

√
D are then con-

gruent. This shows that the eigenvalues of
√
DH

√
D are all greater than or equal to zero.

Therefore, the eigenvalues of DH are also greater than or equal to zero.
Now, we assume λ is an eigenvalue of DH with corresponding eigenvector b and have

DHb = λb ⇒ Hb = λD−1b ⇒ b′Hb = λb′D−1b ⇒ λ = b′Hb

b′D−1b
,

then using Lemma 3, we have λ ≥ 0. For eigenvalue of DH is λ, it is obvious that eigenvalue
of (I + Δt DH(Φ(n)))−1 is

μ = (1 + Δtλ)−1. (15)
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Moreover, by Lemma 3, we know that the minimal eigenvalue of the matrix H is 0 with a
unique eigenvector (1, 1, . . . , 1), therefore, the assertion follows.

2. If L1 is nonempty, the matrix G is not invertible. For convenience, we use a series
of permutations to relocate the zero diagonal elements of D together to the later part of the
diagonal line. Denoting the element number of L1 as |L1| = T−r , there exists an orthogonal
matrix P such that

D = P−1
(
Drr 0
0 0

)
P,

where Drr is an r × r(r < T)diagonal submatrix with positive diagonal elements. Hence,

S−1G(Φ(n))H(Φ(n)) = DH(Φ(n))

= P−1
(
Drr 0
0 0

)
PH(Φ(n)) ∼

(
Drr 0
0 0

)
PH(Φ(n))P

′

:=
(
Drr 0
0 0

) (
Brr Br R
BRr BRR

)
=

(
Drr Brr Drr Br R

0 0

)

where R = T − r and Brr is a symmetric positive definite matrix according to Lemma 3.

We then analyze the matrix

(
Drr Brr Drr Br R

0 0

)
. By a similar argument as above,

one can show that the eigenvalues of Drr Brr are positive. Therefore, we can denote all
the eigenvalues by λ0, λ1, . . . , λr−1, λr = λr+1 = . . . = λT−1 = 0 with corresponding
eigenvectors e0, e1, . . . , eT−1.

In the next,we reveal the structures of ei and show that for eachλi , its algebraicmultiplicity
equals to its geometric multiplicity. Consider the following system of equations:

(
Drr Brr Drr Br R

0 0

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ei,0
...

ei,r−1

ei,r
...

ei,T−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= λi

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ei,0
...

ei,r−1

ei,r
...

ei,T−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, i = 0, 1, . . . ,T − 1.

For i = 0, . . . , r − 1, ei,r = ei,r+1 = . . . = ei,T−1 = 0 and the eigenvector ei can be
determined by the sub linear system of Drr Brr . As Drr Brr is similar to a real symmetric
matrix, it is then similar to a diagonal matrix. Therefore, the algebraic multiplicity and
geometric multiplicity of each λi are the same. For i = r, r + 1, . . . ,T − 1, λi = 0, its
geometric multiplicity is

T − rank

(
Drr Brr Drr Br R

0 0

)
= T − r,

which is exactly the algebraic multiplicity. Therefore, the set of eigenvectors {ei , i =
0, 1, . . . ,T − 1} is complete.

In all, the eigenvalues of DH satisfy{
λi = 0, i ∈ L1

λi > 0, i ∈ L2.

Now, we come back to (I +Δt DH(Φn))−1. Its eigenvalues {μi , i = 0, 1, . . . ,T−1} satisfy{
μi = 1, i ∈ L1

0 < μi < 1, i ∈ L2,

123



J Sci Comput (2017) 70:631–661 641

and the corresponding eigenvectors {bi , i = 0, 1, . . . ,T − 1} satisfy

bi =
{

(1, 1 . . . , 1), i ∈ L1

(bi,0, . . . , bi,k, . . . , bi,T−1) with {bi,k = 0, k ∈ L1}, i ∈ L2.

Therefore, the assertion follows. ��
Corollary 1 (stability) For any initial value Φ(0), with a fixed time step Δt and t0 = 0, we
have that

‖Φ(n+1)‖2 ≤ ‖Φ(n)‖2.
Proof The assertion follows immediately from Theorem 2. ��

The regularization behavior can be interpreted as follows. Suppose that current flow func-
tion is Φ(n). There are two case: L1 is empty and L1 is nonempty. If L1 is empty, the
eigenvalue μmax = 1 has a unique constant vector (1, 1, . . . , 1), which means that the zero
frequency component along the eigenvector (1, 1, . . . , 1) is the only one retained and other
components with higher frequency will shrink. If L1 is nonempty, we can decompose the
Φ(n) as

Φ(n) =
∑
i∈L1

aibi +
∑
i∈L2

aibi , (16)

and
Φ(n+1) =

∑
i∈L1

aibi +
∑
i∈L2

μi ai bi , (17)

where we use the result that μi = 1 for i ∈ L1. It is implied that in (17) components aibi for
i ∈ L1 keep unchanged while other aibi for i ∈ L2 shrink. According to Theorem 2, in the
decomposition of (17), the first summation

∑
i∈L1

aibi are fully preserved, the components
of the second summation

∑
i∈L2

μi ai bi satisfy bi, j = 0, j ∈ L1. It is implied that only
the first summation

∑
i∈L1

aibi contributes to φn
j , j ∈ L1, while the second summation

not contribute to it. From the definition of L1, we know that these unchanged φn
j , j ∈ L1

should be piecewise constant. On the other hand, the shrinking components aibi , i ∈ L2

have the supports in transition domains between piecewise constant region of Φ(n) should
shrink as high-frequency signals. In all, the regularization effect of the discrete flow can be
concluded as that, constant or piecewise constant components preserve while high-frequency
components supported in transition domains shrink.

Theorem 3 (maximum-minimum principle) Let Φ(0) be an initial value and

m(Φ(0)) := min
j=0,1,...,T−1

φ0
j , M(Φ(0)) := max

j=0,1,...,T−1
φ0
j ,

then, m(Φ(0)) ≤ φn
i ≤ M(Φ(0)) for i = 0, 1, . . . ,T − 1, n = 1, 2, . . ..

Proof We have

(S + ΔtG(Φ(n))H(Φ(n)))Φ(n+1) = SΦ(n)

so
Φ(n+1) = (S + ΔtG(Φ(n))H(Φ(n)))−1SΦ(n)

= (I + Δt S−1G(Φ(n))H(Φ(n)))−1Φ(n)

:= AΦ(n),

(18)
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where A = (ai j )T×T. Since G(Φ(n))H(Φ(n)) is positive semidefinite (by Lemma 3), from
Theorem 2.1 on page 3 in [33] we can see that I + Δt S−1G(Φ(n))H(Φ(n)) is an M-Matrix.
Therefore, the elements of A are all nonnegative. On the other hand, by Lemma 3, we can
easily verify that the sum of each row of I + Δt S−1G(Φ(n))H(Φ(n)) is unit and hence of
A. Therefore,

φn+1
i =

∑
j

ai jφ
n
j ≤ max

j
φn
j

∑
j

ai j = max
j

φn
j

and

φn+1
i =

∑
j

ai jφ
n
j ≥ min

j
φn
j

∑
j

ai j = min
j

φn
j

hold for all i and n. The assertion follows this immediately. ��
We point out that, by similar techniques as above, the discretization method in [42] can

be shown having the maximuml–minimum principal for meshes with no obtuse triangles. In
contrast, our discretization in piecewise constant function space can remove this restriction
to obtain the principle.

3.5 Differences Between our Flow and the Flow in [42]

The flow proposed by Wu and Tai [42] is discretized in piecewise linear function space,
while ours is discretized in piecewise constant function space. Basically, the discretization in
piecewise linear function space is suitable to deal with vertex-based problems. In contrast, the
discretization in piecewise constant function space is suitable to deal with face-based prob-
lems. The definitions of basis functions and differential operators of these two discretizations
are totally different.

For clarity, we give a brief review of the discretization in [42]. We denote N1(i) as the
1-neighborhood of vertex vi , which is the indices of vertices connecting to vi ; see Fig. 3b.
Let M1(i) be the 1-disk of the vertex vi . M1(i) is the indices of triangles containing vi ; see
Fig. 3c. The dual cell of vertex vi is showed in Fig. 4a. We denote the area of the dual cell of
vertex vi as ci .

We denote ψ as the level set function of the geodesic curvature flow in piecewise linear
function space. Denoting Ψ (n) = (ψn

0 , ψn
1 , . . . , ψn

V−1)
′. Then the discrete flow in [42] is as

follows:

Fig. 3 The illustration of D1(i), N1(i) and M1(i). The elements contained in D1(i), N1(i) and M1(i) are
plotted in blue respectively. a D1(i) is the 1-ring of the triangle τi , which refers to 3 triangles; b N1(i) is the
1-neighborhood of vertex vi , which refers to 6 vertices; c M1(i) is the 1-disk of vertex vi ; which refers to 6
triangles (Color figure online)
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Fig. 4 a Dual cell of vertex vi which plotted in blue; b Computation of ti j,τ , tik,τ , t jk,τ of triangle τ for
(21) (Color figure online)

{
(C + ΔtW (Ψ (n))L(Ψ (n)))Ψ (n+1) = CΨ (n)

Ψ (0) = Ψ0,
(19)

where C = diag(c0, c1, . . . , cV−1),

W (Ψ (n)) = diag

⎛
⎜⎝

∑
τ≺M1(0)

|[ψn]τ |sτ
∑

τ≺M1(0)
sτ

,

∑
τ≺M1(1)

|[ψn]τ |sτ
∑

τ≺M1(1)
sτ

, . . . ,

∑
τ≺M1(V−1)

|[ψn]τ |sτ
∑

τ≺M1(V−1)
sτ

⎞
⎟⎠

are two diagonal matrices. The calculation of [ψ]τ is referred to the article [42]. The matrix
L(Ψ (n)) = li j in (19) is

li j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
τ≺M1(i)

wτ√|[ψn]τ |2 + β
tii,τ , j = i,

∑
τ,[vi ,v j ]≺τ

wτ√|[ψn]τ |2 + β
ti j,τ , j ∈ N1(i)

0, others,

(20)

where ⎧⎨
⎩
tii,τ = − 1

2 cot θk − 1
2 cot θ j ,

ti j,τ = 1
2 cot θk,

tik,τ = 1
2 cot θ j ,

(21)

as shown in [42]; see also Fig. 4b.
For clearly, we list differences between our discretization and that in [42]:

(1) Our discretization can make the evolving curve exactly distribute on edges of the mesh,
while that in [42] cannot. Our discretization is suitable for surface segmentation appli-
cation, which prevents generating ambiguous triangular strips (see Fig. 1).

(2) Our discretization has better theoretical property. For any meshes, the maximum-
minimum principal is hold for ours. For poor quality mesh with obtuse triangles, the
maximum-minimum principal is not hold in [42].

(3) Our discretization has simpler formulation. From (19) to (21), we can see that the dis-
creatization in [42] needs to calculate the trigonometric function and areas of dual cells.
In contrast, our discretization is simple in calculation; see our discretization in Sect. 3.3.

(4) Our discretization has more sparse coefficient matrix. For example, as we can see in
Fig. 3, the number of nonzero elements in the i th row of the coefficient matrix (11) is 3
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(see Fig. 3a), while that of the coefficient matrix (20) is 6 (see Fig. 3b, c). However, the
dimension of the system (12) of our discretization is larger than the system (19) in [42],
because the number of triangles of the mesh is usually larger than that of vertices.

3.6 A Discussion on the Limit Behavior

The limit behavior of geodesic curvature flow depends on the geometry of the manifold and
the initial flow function. We observe from lots of experiments that, the flow function tends
to be piecewise constant after enough number of iterations. Right now we cannot directly
prove the convergence of the flow function. However, if it converges, i.e., Φ(n) → Φ(�) as
n → ∞, we get, from (12),

(G(Φ(�))H(Φ(�)))Φ(�) = 0, (22)

where G(Φ(�)) is a diagonal matrix and H(Φ(�)) is a symmetric and positive semidefinite
matrix described in (11). The system (22) indicates either gii = 0 or

∑
j hi jφ

�
j = 0,∀i . If

gii = 0, we have

gii =
∑
e≺τi

|[φ�]e|le
∑
e≺τi

le
= 0,

which means φ�|τ j = φ�|τi = φ�
j = φ�

i ,∀τ j ∈ D1(i). If
∑

j hi jφ
�
j = 0, by using the

divergence operator (7), we have

∑
j

hi jφ
�
j =

∑
e=τi

⋂
τk ,

k∈D1(i)

wele√|[φ�]e|2 + β
(φ�

i − φ�
k )

= −sτi

(
div(w

∇φ�√|∇φ�|2 + β
)

)
|τi = 0,

which gives

(
div(w ∇φ�√

|∇φ�|2+β
)

)
|τi = 0. Note that div(w ∇φ�√

|∇φ�|2+β
) is an approximation

of the geodesic curvature of the level set, when w = 1. A large number of experiments
show that, the limit of geodesic curvature flow would be a piecewise constant solution with
discontinuity set to be the closed geodesics of the surface. This can also be observed from
the Eq. (3) in the continuous setting.

As can be seen, in piecewise constant function space, geodesics cannot be directly got
from the zero level set of the flow function. Thus, we assume geodesics distribute at the
position where the sign of the flow function changes. This idea can be extended to solve
multi-phase segmentation problem by a single level set function. The limit behavior observed
from experiments provides a possible way to partition the surface to components separated
by closed geodesics. We will propose a constrained version in the next section, together with
a novel narrow band algorithm to accelerate evolving of the constrained flow function. The
narrow band algorithm is designed to approximate the limit behavior with piecewise constant
function initialization where function value is a constant in each phase.
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4 Constrained Geodesic Curvature Flow with a Narrow Band Algorithm

We now present a constrained geodesic curvature flow with a narrow band algorithm.
Although the limit behavior has not been rigorously proved, this constrained flow helps
in practice to implement multi-region surface segmentation with a single level set function.
It will be described in the discrete setting.

4.1 Constrained Discrete Geodesic Curvature Flow

Assume that some particular triangles are specified and required to keep the flow function
values unchanged at these triangles during the curve evolution. According to the limit of
the flow function, the final flow function would be a piecewise constant flow function whose
discontinuity set contains someclosedgeodesics. It is natural that the unchangedflow function
values can be used as the labels of the subregions of the surface. For this purpose, we divide
all the triangle indices into two sets K1 and K2. K1 is the set of indices encapsulating the
curve evolution, while K2 is the set of indices where the flow function values are constrained
to be fixed during the evolution. When τi ∈ K1, φ

n+1
i is updated by the conventional level

set method. On the contrary, for τi ∈ K2, we set φ
n+1
i = φn

i .
Therefore, we come to following matrix form:

{
(S + ΔtGc(Φ

(n))H(Φ(n)))Φ(n+1) = SΦ(n)

Φ(0) = Φ0,
(23)

where S = diag(sτ0 , sτ1 , . . . , sτT−1), H(Φ(n)) is the matrix introduced in (11), and
Gc(Φ

(n)) = diag(g0, g1, . . . , gT−1) is also a diagonal matrix with

gi =

⎧⎪⎨
⎪⎩

∑
e≺τi

|[φn ]e|le
∑
e≺τi

le
, τi ∈ K1

0, τi ∈ K2.

(24)

Let Φ0 be an initial flow function. With a fixed time step Δt and t0 = 0, the sequence
{Φ(n), n = 0, 1, 2, . . .} determined by (23) is called as constrained discrete geodesic curva-
ture flow of the initial flow function Φ0.

Remark In real computation, (23) can be reformulated into a linear system Ax = b with
much smaller dimension, where x is a vector whose entries refer to triangle indices in K1.
The reason is that, there is no need to calculate the equations of (23) whose indices contained
in K2. Thus, we can remove these equations from (23), which dramatically reduces the
computation cost.

4.2 Analysis of the Constrained Discrete Geodesic Curvature Flow

In this subsection, we present some fundamental theoretical aspects of constrained discrete
geodesic curvature flow, which include the existence and uniqueness, regularization behavior
and maximum-minimum principal.

Theorem 4 (existence and uniqueness) For any initial value Φ0, with a fixed time step Δt
and t0 = 0, there exists a unique constrained discrete geodesic curvature flow {Φ(n), n =
0, 1, 2, . . .} determined by (23).
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Proof We only need to prove the coefficient matrix of the system (23) is invertible. We
compute the determinant of (S + ΔtGc(Φ

(n))H(Φ(n))) and have

det(S + ΔtGc(Φ
(n))H(Φ(n)))

= det(S + Δt diag(g0, g1, . . . , gT−1)H(Φ(n))

= det(S) · det
(
I + Δt diag

(
g0
s0

,
g1
s1

, . . . ,
gT−1

sT−1

)
H(Φ(n))

)

:= det(S) · det(I + ΛH)

= det(S) ·
⎛
⎝1 +

∑
1≤k≤T

∑
i1<i2<...<ik

ΛH

(
i1 i2 · · · ik
i1 i2 . . . ik

)⎞
⎠

> 0,

by Lemmas 1, 2 and 3. This proves the invertibility of the coefficient matrix of the system
(23). ��
Theorem 5 (regularization behavior) For the constrained flow functionΦ(n), we assume that
L1 = {i |φn

j = φn
i , j ∈ D1(i)}, L2 = K2 (the index set for constrained triangles) and L3 =

{0, 1, . . . ,T − 1}\(L1 ∪ L2) are three index sets. Then, (I + Δt S−1Gc(Φ
(n))H(Φ(n)))−1

has eigenvalues 0 < μ0, μ1, . . . , μT−1 ≤ 1 with corresponding eigenvectors {vi =
(vi,0, vi,1, . . . , vi,T−1)

′, i = 0, 1, · · · , T − 1}, which is complete. Moreover, for all i ∈
L1 ∪ L2, μi = 1 is the eigenvalue with (1, 1, . . . , 1) as one of the corresponding eigenvec-
tors; for i ∈ L3, 0 < μi < 1 and vi j = 0, j ∈ L1 ∪ L2 in its corresponding eigenvector
vi .

Proof Let

D = S−1Gc(Φ
(n)),

which is a diagonal matrix with nonnegative elements.
Since L2 is nonempty, then Gc is not invertible. For convenience, we use a series of

permutations to relocate the zero diagonal elements of Gc together to the later part of the
diagonal line. Denoting the element number of L1 ∪ L2 as |L1 ∪ L2| = T − m, there exists
an orthogonal matrix P such that

D = P−1
(
Dmm 0
0 0

)
P,

where Dmm is anm×m(m < T) diagonal submatrix with positive diagonal elements. Hence,

S−1Gc(Φ
(n))H(Φ(n)) = DH(Φ(n))

= P−1
(
Dmm 0
0 0

)
PH(Φ(n)) ∼

(
Dmm 0
0 0

)
PH(Φ(n))P

′

:=
(
Dmm 0
0 0

) (
Jmm Jmq

Jqm Jqq

)
=

(
Dmm Jmm Dmm Jmq

0 0

)

where q = T − m and Jmm is a symmetric positive definite matrix according to Lemma 3.

We then analyze the matrix

(
Dmm Jmm Dmm Jmq

0 0

)
, one can show that the eigenval-

ues of Dmm Jmm are positive. Therefore, we can denote all the eigenvalues of DH by
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λ0, λ1, . . . , λm−1, λm = λm+1 = . . . = λT−1 = 0 with corresponding eigenvectors
e0, e1, . . . , eT−1.

With a similar analysis of Theorem 2, we can see the eigenvalues of DH satisfy
{

λi = 0, i ∈ L1 ∪ L2,

λi > 0, i ∈ L3.

Now, we come back to (I +Δt DH(Φn))−1. Its eigenvalues {μi , i = 0, 1, . . . ,T−1} satisfy
{

μi = 1, i ∈ L1 ∪ L2

0 < μi < 1, i ∈ L3,

and the corresponding eigenvectors {vi , i = 0, 1, . . . ,T − 1} satisfy

vi =
{

(1, 1 . . . , 1), i ∈ L1 ∪ L2,

(vi,0, . . . , vi,k, . . . , vi,T−1)with{vi,k = 0, k ∈ L1 ∪ L2}, i ∈ L3.

Therefore, the assertion follows. ��
Theorem 6 (maximum-minimum principle) Let Φ(0) be an initial value and

m(Φ(0)) := min
j=0,1,...,T−1

φ0
j , M(Φ(0)) := max

j=0,1,...,T−1
φ0
j ,

then, m(Φ(0)) ≤ φn
i ≤ M(Φ(0)) for i = 0, 1, · · · ,T − 1, n = 1, 2, . . ..

Proof This can be proved in a way similar to Theorem 3. ��
4.3 A Narrow Band Algorithm Applied to Multi-phase Segmentation

Narrow band implementation is a basic technique in level set method [1,2,9,45], whose
main purpose is to reduce the computational cost. Here we propose a new narrow band
algorithm which, when combined with the constrained geodesic curvature flow, is quite
effective for multi-phase segmentation. Compared to conventional narrow band algorithms,
our algorithm has two differences. First, our algorithm uses narrow bands not only to reduce
the computational cost, but also to track the contour (Note that in multi-phase segmentation,
contour tracking is a difficult problem). Second, the initialization and re-initialization of our
algorithm use piecewise constant function (inspired by the limit of the flow function), instead
of the signed distance function (which is not easy to get on irregular grids).

4.3.1 Overview of Narrow Band Algorithm

In this subsection, we present an overview of the narrow band algorithm.

Initialization We begin with inputting N closed curves as the initial contours. Given N con-
tours a region-growing like method is used to separate the entire surface M into S regions,
i.e., M = ∪S

i=1Mi with the regions {Mi : i = 1, 2, . . . ,S}. After that, we use a piecewise
constant level set function to initialize these regions as following

φ = i in Mi , i = 1, 2, · · · ,S. (25)

This initialization method is different from the conventional method which uses Eikonal
equation to get a signed distance function.
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Fig. 5 The illustration of the narrow band data structure. The width of the band is 2. The contour Ci encapsu-
lated in the narrow band Bi is plotted in blue. The boundary Ei of the narrow band is plotted in red. The two
regions contained in the band, which are separated by the contour, are plotted in yellow and gray, respectively.
Assume these two regions to be two sub-regions of Mk and Mj , respectively. The set of the region labels of
the band is Ri = ( j, k) (Color figure online)

Narrow Band Construction For given contours, we can build corresponding narrow bands.
We denote the contours as {Ci : i = 0, 1, . . . ,N}, where one contour Ci = (e1, e2, . . . , en)
is a set of edges. The narrow bands, encapsulating these contours, are denoted as {Bi : i =
0, 1, . . . ,N}. We use diagram to illustrate one narrow band Bi in Fig. 5 where the bandwidth
is 2.

We can see that the narrow band Bi contains the following information:

1. The set Ri = ( j, k) of region labels;
2. The set Ti of triangles contained in the band Bi ;
3. The boundary Ei of Bi .

Hence, the narrow band data structure is an array Bi = {Ri , Ti , Ei }. The construction of this
data structure includes three steps, which is detailed in Algorithm 1.

Algorithm 1 Build narrow band data structure
Input: One contour Ci ; Narrow band width k.
Output: Narrow band data structure Bi = {Ri , Ti , Ei }.
1. 1.1 Find region label set Ri = ( j, k) satisfying Mj

⋂
Mk = Ci (Mj , Mk are two regions separated by

contour Ci );
1.2 Add Ri to Bi ;

2. 2.1 Get vertex set VCi of contour Ci ;
2.2 For all v ∈ VCi do

Find k-ring neighbour triangle set Nk (v) of vertex v (see Fig. 6 for k = 2);
Add Nk (v) to the set Ti ;

2.3 Delete duplicated triangles in Ti ;
2.4 Add Ti to Bi ;

3. 3.1 Find edge set Ei as the band boundary;
3.2 Add Ei to Bi .

Update of Contour and Segmentation Regions Unlike the conventional level set method
where the contour is the zero level set, we regard the contour as the ’discontinuity set’ of the
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Fig. 6 The illustration of a
two-ring neighbour face set of
vertex v

level set function. Hence, we devise an algorithm (see Algorithm 2) to find a closed curve
consisting of a set of edges with as large |∇φ| as possible. This closed curve is regarded
as a contour. After updating the contour, we update the segmentation regions according to
the position of the new contour. This algorithm is performed at every specified time steps
(i.e., every 10 steps), for two reasons. The first reason is to reduce the computation cost. The
second reason is that, more iterations make the level set function more ’stable’ to track a
valid new contour.

The algorithm consists of two steps. In the first step, we start from an edge with the largest
|∇φ| to find a closed-curve whose edges have as large |∇φ| as possible. In the second step,
we verify the validity of the new contour updated in step one by the length change. The
length of the new contour should be less than the old one. Also, the decreasing speed of
the contour length should be not too large. If the decreasing speed is too large, it manifests
that the variation of the level set function is strong and the function is not ’stable’ enough.
We then take this case as an invalid update. If the new contour is a valid one we update the
segmentation regions according to the position of the contour, otherwise we keep the contour
unchanged. The details can be found in Algorithm 2.

Remark In most cases, the first step of Algorithm 2 can find a closed-curve by choosing an
appropriate time step. If the length of the current curve is more than one and a half times of
the old one, it is failed to find a closed-curve as the new contour. However, such case is rare.
If it happens, we just need to keep the old contour unchanged. Although we cannot provide
a theoretical guarantee, the second step of Algorithm 2, the verification of the validity of the
new contour by the length change rate, can prevent producing the false contours in all of our
examples.

Intersection Detection, Re-initialization and Reconstruction As we track the evolving con-
tour in the narrow band, we must ensure the contour to stay within the band. Similar to
[1,2], we do not rebuild a new band around the contour at each time step, because it is a
time-consuming process. Instead, we use a band for as many iterations as possible until the
contour intersects with the boundary of the band. In addition, when there is an intersection,
we need to re-initialize the level set function and update the narrow band.

The intersection detection method is simple. We just need to verify whether there are
duplicated vertices between the contour Ci and the boundary Ei of the band Bi . If there is an
intersection, we use the region label set Ri = ( j, k) of the band Bi to re-initialize the level
set function within the band Bi according to the position of Ci . Here, our re-initialization
method boosts the constrained flow function to be a valid approximation of the limit behavior
solution. After the re-initialization we directly apply Algorithm 1 to rebuild a new band from
the contour Ci .
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Algorithm 2 Update contour and segmentation regions
Input: One narrow band Bi ; Evolved level set function φ.
Output: One contour Ci ; Updated segmentation regions Mj and Mk .

C̃i = Ci ,Ci = {∅};
1. Starting from an edge with the largest |∇φ|, find a closed-curve whose edges have as large |∇φ| as

possible; and assign the curve to contour Ci

1.1 Find edge e0 with the largest |∇φ| in band region Bi ;
Get two end points vstart ≺ e0, vend ≺ e0 of the edge e0;
Ci ← e0;

1.2 Repeat
Find next edge ei has as large |∇φ| as possible which satisfies: vstart ≺ ei and ei /∈ Ci ;
Ci ← ei ;
Reset vstart = v, where v ≺ ei and v �= vstart ;
Until(vend = vstart )

2. Check if Ci is a valid new contour; and update segmentation regions if necessary

2.1 Compute curve lengths lCi , lC̃i
of Ci , C̃i , respectively;

2.2 If lCi < lC̃i
and lCi > 0.75lC̃i

(Ci is valid)

Update segmentation regions Mj and Mk according to the position of Ci ;
Else (Ci is invalid)
Use old contour (Ci = C̃i );

Stopping Criterion We use the following two stopping criteria:

N∑
i=1

|lni − ln−1
i | = 0, (26)

where li is the length of the contour Ci and N is the number of the contours; and

∑T−1
i=0 sτi |φn

i − φn−1
i |2∑T−1

i=0 sτi
< δ, (27)

where δ is an accuracy threshold. In this paper, we set δ = 10−4. The stop criterion (26)
verifies whether all lengths of the contours keep unchanged. The stop criterion (27) measures
the change of the flow function.

4.3.2 The Narrow Band Algorithm

In summary, our narrow band algorithm is given in Algorithm 3, where the details of each
sub-algorithm can be found in Sect. 4.3.1.

Remark For the consideration of computational efficiency, our narrow band algorithm is
designed for curve evolution with fixed topology. We mention that, in multi-phase surface
segmentation, this is enough in most cases. The reason is that many existing methods (e.g.,
random walks [26]) and manual inputs can provide initial segmentations with correct topol-
ogy.Most contours of these initializations are even nearby the correct segmentation positions;
see the examples in Sect. 5.2. Even with an initialization far away from the correct cutting
positions, our method can evolve the contours to correct positions, as long as the topology
of initialization is correct.
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Algorithm 3 Narrow band algorithm
Input: N initial contours.
Output: N final contours {Ci }Ni=1; S segmentation regions {Mi }Si=1.

1. Initialization:

1.1 Use N initial contours {Ci }Ni=1 to divide surface M into S segmentation regions {Mi }Si=1 satisfying
M = ⋃s

i=1 Mi ;
1.2 Initialize the level set function φ by formulation (25);
1.3 Build N initial narrow bands {Bi }Ni=1 from contours {Ci }Ni=1 by Algorithm 1;

2. Repeat

2.1 Evolve φ according to system (23) with a specified time steps;
2.2 Update contours {Ci }Ni=1 and segmentation regions {Mi }Si=1 in narrow bands {Bi }Ni=1 by Algorithm

2;
2.3 For i=1 to N do

Detect intersection between Ci and Ei (boundary of Bi );
If Ci

⋂
Ei �= {∅}

Re-initialize φ within the narrow band Bi according to the updated contourCi and region labels
Ri = ( j, k);
Rebuild the narrow band Bi from the updated contour Ci by Algorithm 1;

Until (stop criterions (26), (27) satisfied)

5 Applications and Numerical Examples

We have implemented our discrete and constrained discrete geodesic curvature flows using
C++. Two applications will be presented in this section with some numerical examples. We
use two quantities as in [42] to verify the robustness of our method to mesh quality. These
quantities are defined as following:

Dglobal = minτ area of τ

maxτ area of τ
,

Dlocal = min
τ

mine≺τ length of e

maxe≺τ length of e
.

The mesh information of the surfaces used in this paper are listed in Table 1. From Table 1
we can see that, several meshes are very irregular, e.g., the Dumbbell surface. Our method
can effectively handle all the surfaces and produce correct results.

5.1 Closed-Curve Evolution Under Geodesic Curvature Flow

In this subsection, we simulate closed-curve evolution under geodesic curvature-dependent
velocity. In this case the weight function is set to be w(·) = 1. As mentioned in Sect. 1, any
closed-curve on a manifold will evolve to disappear or to closed geodesic(s). Some examples
are provided, all of which were calculated by the discrete geodesic curvature flow (12). For
ease of viewing, we plot the whole closed-curve on the surface. Its front part is plotted in
blue while the occluded part is plotted in black.

The example in Fig. 7 demonstrates the maximum-minimum principle (Theorem 3) and
the stability (Corollary 1) of our discrete geodesic curvature flow. The initial flow function
was specified to be a general function with non zero gradients on most edges. In particular,
we first constructed a PCA plane from the initial curve, then set the values of the initial flow
function to be the signed Euclidean distance of the faces to the plane. These values were
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Table 1 Mesh information of surfaces used in this paper

Surface #Vertices #Triangles Dglobal Dlocal

Bimba 30,002 60,000 0.107037 0.336681

Bunny 34,835 69,666 4.99319e−006 0.0632449

Dumbbell 18,878 37,752 2.63934e−007 0.000506865

Fertility 19,994 40,000 0.00831098 0.188908

Torus 3200 6400 0.256282 0.471074

Teddy 13,826 27,648 0.0803282 0.402108

Cup 15,006 30,008 0.000435722 0.022333

Horse 19,851 39,698 0.000429362 0.0372104

Child 26,798 53,592 0.102707 0.484837

Lamp 26,408 52,812 0.00929557 0.021453

Buste 25,467 50,930 0.0785729 0.314679

Momento 26,277 52,550 0.00564995 0.0945791

Gargoyle 25,002 50,000 0.000194802 0.0814815

Elk 24,013 48,026 0.00446882 0.143718

Fig. 7 Closed-curve evolution on the Bimba surface. The curve evolves from the body of the Bimba surface
to the neck. The front part of the curve is plotted in blue while the occluded part is in black. From left to
right, the timestamps are 0, 20, 40, 60, 110, respectively. The numbers in the brackets denote the minimum,
maximum, and the �2 norm of the current flow function (Color figure online)

normalized within [−1, 1]. With a fixed time step Δt = 0.5, the curve evolves gradually
from left to right in Fig. 7. The numbers in the brackets demonstrate the maximum-minimum
principle and the stability of our discrete flow.

In Fig. 8, we compare curve evolution procedures by different initial flow functions, which
can be interpreted by the regularization behavior (Theorem2).We started from the same curve
on the Bunny surface, but the initial flow functions were different. In the top row of Fig. 8,
the initial flow function was set to φ = −1 at one side of the curve and φ = 1 at the other
side; while in the bottom row of Fig. 8, we used an initialization by the method in Fig. 7.With
a same time step Δt = 0.5, we recorded the evolution at several timestamps. As can be seen,
both initial flow functions give similar evolution procedures. The input curve firstly shrinks
and breaks into two parts. Finally one part on the back disappears while the other evolves
to a closed geodesic around the ear. However, the evolution speeds are quite different. The
evolution speed in the bottom row is more quickly than the speed in the top row, especially
at the beginning. The reason of this phenomenon is the regularization behavior of the flow.
The piecewise constant components of the flow function keep fixed while the high frequency
components supported in transition domains shrink quickly. The flow function in the top
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Fig. 8 Closed-curve evolution on the Bunny surface with different initial flow functions. In the first row,
the initial flow function is set to φ = −1 at one side of the initial curve and φ = 1 at the other side. In the
second row, the initial flow function is a general function constructed by the method in Fig. 7. The curve
evolves in the second rowmore quickly than that in the first row, especially at the beginning. From left to right,
the timestamps are 0, 30, 50, 70, 90, 120, respectively. The numbers in the brackets denote the minimum,
maximum, and the �2 norm of the current flow function

Fig. 9 Closed-curve evolution on the Dumbbell surface. In the top row the curve evolves progressively to a
stable geodesic. In the bottom row the curve evolves firstly to an unstable geodesic which splits the Dumbbell
surface to two halves, then shrinks and breaks into two curves, and finally the two curves both disappear

Fig. 10 Closed-curve evolution on the Fertility surface. The curve firstly shrinks, then it breaks into two
curves. Finally the two curves evolve to be two stable geodesics, respectively

row has much larger constant components than that in the bottom. The maximum-minimum
principle and the stability can also be observed in Fig. 8.

Figure 9 shows examples about stable and unstable closed geodesic(s) [31] on the Dumb-
bell surface. In the first row of Fig. 9, the curve evolves to a stable geodesic. In contrast, in the
bottom row of Fig. 9 the curve evolves firstly to an unstable geodesic, and finally disappears.
At last we show an example about curve evolution on a high-genus surface in Fig. 10.
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Table 2 The accuracy test of the
geodesic curvature flow for a
circle moving on a unit sphere

The time step is 0.01 and the
number of the iterations is 50

Mesh size ( #triangles) �2 Error Order

2500 0.014076 –

10,000 0.012343 0.188803

40,000 0.011353 0.120303

160,000 0.009377 0.275844

5.2 Accuracy Test

In this subsection, we test the accuracy of our discretization. It is very hard to get analytical
solution for geodesic curvature flow on general surfaces. We thus consider a circle moving
from the initial position of z = 0.5 on the unit sphere by geodesic curvature flow. At t = 0
the circle is the zero level set of φ(x, y, z; 0) = 0.5 − z, (x, y, z) ∈ S2. By symmetry and
basic calculations, we reformulate the geodesic curvature flow (3) as follows

{
∂φ(x,y,z;t)

∂t + z ∂φ(x,y,z;t)
∂z = 0,

φ(x, y, z; 0) = 0.5 − z,
(28)

where (x, y, z) ∈ S2.
The analytic solution of the above equation reads

φ(x, y, z; t) = 0.5 − ze−t .

In the test, we sampled the unit sphere at several resolutions and compute the numerical
solution and analytical solution. The �2 errors between the numerical and analytical solutions,
as well as the accuracy orders, are recorded in Table 2. As expected, the accuracy order is
low. However, the flow can still be applied in graphic applications, since a mesh is usually
given and the resolution is fixed.

5.3 Multi-phase Segmentation by a Single Level Set Function

In this subsection, we discuss multi-phase surface segmentation, by using the constrained
geodesic curvature flow coupled with the narrow band algorithm. Our constrained discrete
flow is constructed in piecewise constant function space. It directly partitions a surface mesh
into sub-meshes, avoiding the postprocessing step required by existing discrete flows in
piecewise linear function space; see Fig. 1 for an example. More importantly, our constrained
flow with narrow band algorithm provides a multi-phase segmentation by a single level
set function. The conventional level set framework, where the zero level set is used for
partitioning, is well suited for two-phase segmentation. While working for many image
segmentation and simple surface segmentation applications, conventional level set method
has some difficulty to partition high-genus surfaces. See Fig. 2 for an example. If to segment
the Torus surface to three parts, it is impossible to represent the cutting contours by the zero
level set of a function. Therefore, we propose to use our constrained flow and narrow band
algorithm to solve this problem. Our method can generate correct segmentation result (see
Fig. 2b).

5.3.1 The Weight Function w(·)
The weight function w(·) plays an important role in driving the contour evolution. In active
contour models [5,18,22,29] for planar image segmentation, w(·) depends on the intensity
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Fig. 11 The method to verify
whether an edge e is a concave
edge

Fig. 12 The segmentation results with different weight functions on the Teddy surface. a The blue initial
contours; b the red final contours calculated with the weight function w = 1; c the segmentation result by (b);
d the red final contours calculated with weight function w(·) by (29); e the segmentation result by (d) which
is with more human perception (Color figure online)

gradient of the image. On a triangulated surface, if w(·) is simply chosen as a constant
function, e.g.,w = 1, the final cutting contours would be locally shortest under the Euclidean
metric. However, according to the minima rule [21], human perception tends to divide a
surface into parts along minimum negative curvatures. A usual way is to require the weight
function to be monotonically decreasing with respect to the absolute normal difference [26,
44]. In this paper, we set w(·) as follows:

w|e = 1

1 + λi j‖N (τi ) − N (τ j )‖2
, ∀e, (29)

where N (τi ), N (τ j ) respectively denote the normal vectors of triangles τi and τ j . The tri-
angles τi , τ j share the common edge e and λi j is a scaling factor. The scaling factor λi j is
chosen by the following criterion. If the common edge e is a concave edge, λi j = 5, other-
wise, λi j = 1. The method to verify whether the edge e is a concave edge is illustrated in
Fig. 11. If (N (τi ) · Vi ) > 0 and (N (τ j ) · Vj ) > 0, the edge e is a concave edge; otherwise, e
is a convex edge.

The effect of the weight functionw(·) is shown in Fig. 12. The flow withw = 1 generates
final contours with local minimal lengths under Euclidean metric; see Fig. 12b. In contrast,
withw(·) calculated by (29), we obtain the final contours as in Fig. 12d, which fitmore human
shape perception. In this paper, we set the weight function w(·) by (29) for all segmentation
examples.

5.3.2 Initialization for Multi-phase Segmentation

Like conventional level set methods, our constrained flow and narrow band algorithm need
an initialization. As the flow is a gradient descent method of the non-convex curve energy,
it is to require the initial contours nearby the desired cutting positions. Fortunately, this kind
of initial contours can be generated by simple manual inputs or many existing automatic
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Fig. 13 The segmentation results with initial contours produced by random walks algorithm [26] and manual
inputs. In the first and second row, the initial contours are plotted in blue and the final contour are plotted in
red. In the first row, the initial contours are produced by rand walks algorithm [26]. In the second row, the
initial contours are produced by manual inputs. The segmentation results are on the bottom row (Color figure
online)

algorithms such as the random walks algorithm [26]. They can provide topologically correct
initializations. For example, the initial contours in Fig. 12a are produced by rough manual
inputs. Our constrained flow and narrow band algorithm evolve these contours and produce
final cutting contours in Fig. 12b, d. Figure 13 shows some examples, where the initial
contours were generated by randomwalks algorithm [26] and manual inputs respectively. As
we can see in the first row of Fig. 13, our constrained flow and narrow band algorithm can be
regarded as an effective refining method of existing methods (e.g., random walks [26]). As
shown in the first row of Fig. 13, our method can efficiently drive the contours to the desired
cutting positions, although the initial contours generated by manual inputs are far from the
desired cutting positions.

5.3.3 Results of Multi-phase Segmentation

In addition to Figs. 2 and 13, we provide some experimental results to show that our method
can produce desired multi-phase segmentations on both simple and complex surfaces. We
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Fig. 14 Segmentation results on more surfaces. The top row shows the initial contours plotted in blue and
the final contours in red. The segmentation results are on the bottom row (Color figure online)

have tested our method on over thirty different surfaces and illustrated a part of the results in
Figs. 14 and 15. It can be seen that, in all the results, the final contours are smooth and along
geometric edges, due to their minimal weighted curve lengths. Such smooth and geometry-
aware properties match the human perception well. Our constrained flow and narrow band
algorithm implement multi-phase surface segmentation with a single level set function.

5.4 Remarks on the Implementation

We have implemented our method using C++ on a notebook with Intel dual core
2.10/2.10GHZ processor and 4GBRAM. The implementation of our method consists of two
parts. The first part is to solve the single-step evolution iteratively, by using the linear system
(12) and (23), which is the most time-consuming part of our method. We use Intel MKL�

package to solve the two nonsymmetric systems (12) and (23) by computing a Cholesky
decomposition. The matrices G(Φ(n)), H(Φ(n)) in (12) and matrices Gc(Φ

(n)), H(Φ(n))

in (23) are updated dynamically in each iteration, according to the absolute gradient of the
flow function Φ. The second part is the narrow band algorithm described in Sect. 4.3, which
includes several sub-algorithms. For example, the data structures of narrow bands are builded
by Algorithm 1; the tracking of the new contours in narrow bands is Algorithm 2, etc. We
mention that the efficiency of our method depends on the geometry of the surface, as well as
the initializations of the curve and the flow function. If the initial curve is nearby a geodesic,
the flow ’converges’ quickly; otherwise, it need more iterations.
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Fig. 15 Segmentation results on more complex surfaces. The top row shows the initial contours plotted in
blue and the final contours in red. The segmentation results are on the bottom row (Color figure online)

Table 3 CPU costs for closed-curve evolution examples of our flow

Surface CPU costs (s)

Gradually changing function
initialization

Piecewise constant function
initialization

Bimba (Fig. 7) 221.921 343.182

Bunny (Fig. 8) 212.915 292.189

Dumbbell (first row of Fig. 9) 93.221 143.216

Fertility (Fig. 10) 101.752 147.658

For each example, we use the same time step Δt = 0.5 and record two CPU costs produced by two different
initial flow functions

The CPU costs of our method for all closed-curve evolution examples in Sect. 5.1 are
recorded in Table 3. For each example, we record two computational times of our flow
produced by two different initial flow functions. One initial flow function is a gradually
changing function constructed by the method in Fig. 7, while the other initial flow function
is a piecewise constant function (φ = −1 at one side of the initial closed-curve and φ = 1
at the other side). We set the time step Δt = 0.5 for all closed-curve evolution examples.
Currently, we only design the narrow band algorithm for multi-phase segmentation problem.
The initialization of the narrow band algorithm should be with correct topology, which is
easily to be got by simple existing method (e.g., random walks [26]) or manual input.
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Table 4 CPU costs for
multi-phase segmentation
examples by narrow band
algorithm

Surface CPU costs (s)

Torus (Fig. 2) 4.235

Teddy (Fig. 12b) 13.689

Teddy (Fig. 12d) 7.4176

Cup (first row of Fig. 13) 1.412

Cup (second row of Fig. 13) 8.702

Horse (first row of Fig. 13) 14.192

Horse (second row of Fig. 13) 18.608

Child (first row of Fig. 13) 2.448

Child (second row of Fig. 13) 13.088

Lamp (Fig. 14) 7.394

Buste (Fig. 14) 26.078

Bunny (Fig. 14) 18.536

Momento (Fig. 15) 8.840

Gargoyle (Fig. 15) 16.616

Elk (Fig. 15) 15.877

The CPU costs of narrow band algorithm for multi-phase segmentation examples in
Sect. 5.3 are listed in Table 4. For all multi-phase segmentation examples, the time step
and the bandwidth of the narrow band algorithm are set to be 0.5 and 2 respectively. As can
be seen, by the narrow band algorithm, the computation costs are dramatically decreased,
compared to those listed in Table 3.

6 Conclusion and Future Work

In this paper, we proposed a new numerical method to calculate geodesic curvature flow
on triangulated surfaces. The new discretization can directly evolve curve on edges of the
mesh and thus avoids the postprocessing step to classify or partition the triangles in undeter-
mined strips. Compared to previousmethods, our discretization has several advantages. It has
simpler formulation and more sparse coefficient matrix. Not only the existence, uniqueness,
and regularization behavior, but also the maximum-minimum principal, have been proved.
Therein the maximum-minimum principal has not been presented in all previous approaches.
Lots of experiments show that, the limit of the discrete flow is a piecewise constant solution
with ’discontinuity set’ to be the closed geodesics of the surface. We therefore proposed a
discrete constrained geodesic curvature flowwith detailed theoretical analysis. The system of
the constrained flowcan be equivalently reformulated into amuch smaller one. Thus, the com-
putational cost is dramatically reduced. This constrained flow, combined with a new narrow
band algorithm, yields multi-phase surface segmentation application with a single level set
function. This combination can be considered as an cooperation between Lagrangian frame-
work and Eulerian framework. Our two flows were applied to closed-curve evolution and
multi-region surface segmentation, respectively. The numerical experiments demonstrated
the effectiveness.

Several problems are left open. First, a rigorous proof of the convergence of the flow
function is missing. Second, to design a narrow band algorithm for the case of topology
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change is a future work. Third, similar discretizations can be applied to other curvature flows
such as Willmore flow.
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