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Abstract

Mesh denoising is a fundamental problem in geometry processing. The main
challenge is to preserve sharp features (such as edges and corners) and smooth
regions (such as smoothly curved regions and fine details) while removing the
noise. State-of-the-art denoising methods still struggle with this issue. In this
paper, we first propose a new variational model combining total variation and
anisotropic Laplacian regularization to filter the normal vector field of the mesh.
This model can preserve sharp features and simultaneously handle smooth
regions well. Then, a new vertex updating scheme is presented to reconstruct
the mesh according to the filtered face normals. It prevents the orientation
ambiguity problem introduced by existing schemes. Experiments show that
our denoising method outperforms all compared methods visually and quan-
titatively, especially for meshes consisting of both sharp features and smooth
regions.
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1 INTRODUCTION

Triangulated meshes are wildly used to represent shapes in a variety of fields, such as computer graphics, virtual reality,
and computer vision. Recently, meshes are usually derived by scanner devices from the real world. However, even with
high-fidelity scanners, the scanning process inevitably generates noise, which degrades the quality of meshes and causes
errors in downstream graphics applications.1 Thus, mesh denoising becomes an important task in graphics processing.
The main challenge in this task is to remove noise while preserving both sharp features and smooth regions well.

State-of-the-art mesh denoising methods, such as that in the method proposed by Sun et al.,2 bilateral weighting
filtering,3 TV,4 and 𝓁0

5 minimization methods, achieve greatly successes. However, these methods are either not effec-
tive to deal with sharp features or less robust to handle smooth regions. Specifically, the recent TV4 and 𝓁0

5 minimization
methods preserve sharp features well but inevitably suffer staircase effects in smooth regions. In other words, if surfaces
have smooth regions, the two methods tend to flatten smoothly curved regions and sharpen fine details. The staircase
effect6 is caused by their sparsity regularization. In contrast, the method proposed by Sun et al.2 and the bilateral weight-
ing method3 can efficiently handle smooth regions. However, they usually blur sharp features, especially when the noise
level is high. Therefore, typical existing methods can deal with either sharp features or smooth regions.

In this paper, we propose a variational model combining TV and anisotropic Laplacian regularization term to filter
the normal vector field. This model has crucial advantage in preserving sharp features and smooth regions and in sub-
stantially suppressing staircase effects. It is numerically solved by an iterative algorithm with the operator splitting and
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(a) (b) (c) (d) (e) (f) (g)

FIGURE 1 Denoising results of Block (corrupted by Gaussian noise with standard deviation 𝜎 = 0.2, the mean edge length of the
clean mesh). From left to right: (a) noisy mesh; denoising results produced by (b) our proposed iterative combining normal filtering (ICNF),
(c) TV method,4 (d) 𝓁0 minimization,5 (e) local bilateral filtering,3 (f) global bilateral filtering,3 and (g) the method proposed by Sun et al.2

The second row is the zoomed-in view of Block

augmented Lagrangian method (ALM). After restoring the face normals, we introduce a new vertex updating scheme to
perfectly reconstruct the vertex positions of the mesh, which solves the orientation ambiguity problem. To summarize,
the contributions of the paper are listed as follows:

• We present a novel normal filtering model combining TV and anisotropic Laplacian term, which can simultaneously
preserve sharp features and smooth regions.

• We propose a new vertex updating scheme to reconstruct the mesh. Compared with existing vertex updating schemes,
it significantly improves the mesh quality and reduces foldovers.

Experiments illustrate that our denoising method outperforms the compared state-of-the-art methods2,4 visually and
quantitatively (see Section 6), especially for the mesh consisting of sharp features and smooth regions as showed in
Figure 1. Last but not the least, when the noise level is high, our new vertex updating scheme can still perfectly reconstruct
the mesh, whereas the scheme in the work of Sun et al.2 may produce frequent foldovers; see Figure 3.

2 RELATED WORK

Mesh denoising has been studied for years. Although a wide variety of denoising methods have been proposed, we only
review those methods that are most relevant to this work.

Laplacian-based denoising methods can be considered as filtering schemes, which are roughly classified into isotropic
and anisotropic methods. The isotropic methods7,8 are classic and simple, which smooth meshes without considering
geometric features. Thus, these methods suffer surface shrinkage and blur geometric features. Later on, to overcome this
problem, many anisotropic methods have been proposed.9–15 These anisotropic methods are more effective to deal with
geometric features. However, when the noise level increases, they are difficult to produce satisfactory results, especially
for meshes containing sharp features.

Recently, many feature-preserving denoising methods were proposed.3–5,16–20 For preserving sharp features, many
researchers use the conception of sparsity to remove noise from meshes. He et al.5 proposed 𝓁0 minimization approach to
remove noise by inducing the sparsity for an edge-based operator. Zhang et al.4 applied TV regularization on face normal
field to remove noise. Lu et al.20 designed 𝓁1-median normal filter, which can effectively handle meshes with different
levels of noise and irregular surface sampling. Although these sparsity minimization methods can effectively remove
noise and preserve sharp features, they suffer undesired staircase effects in smoothly curved region. In particular, this
phenomenon is more serious for 𝓁0 minimization,5 due to its high sparsity requirement.

3 NOTATIONS

A mesh of arbitrary topology with no degenerate triangles inR3 is represented as M. The set of vertices, edges, and triangle
faces of M are denoted as {vi ∶ i = 1, 2, … ,V}, {ei ∶ i = 1, 2, … ,E} and {𝜏 i ∶ i = 1, 2, … ,T}, respectively. Here V, E,
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and T are the numbers of vertices, edges, and faces of M, respectively. If v is an endpoint of an edge e, then we denote it
as v ≺ e. Similarly, e is an edge of a face 𝜏 denoted as e ≺ 𝜏, and v is a vertex of a face 𝜏 denoted as v ≺ 𝜏.

Furthermore, let D1(𝜏 i) be the 1-ring of triangle 𝜏 i, which is the set of triangles sharing some common edges with 𝜏 i.
Denote the 1-disk of vertex vi as M1(vi), which is the set of triangles containing vi.

4 NORMAL FILTERING USING TOTAL VARIATION AND REWEIGHTED
LAPLACIAN REGULARIZATIONS

The TV method4 preserves sharp features but tends to corrupt smooth regions. In contrast, the Laplacian-based method3

can effectively deal with smooth regions. However, when the noise level increases, it usually fails to preserve sharp fea-
tures. In this section, a normal filtering model using TV and Laplacian regularizations is proposed. It utilizes the best
properties of the two methods and overcomes the weakness of both. The model is iteratively solved for the reweighted
Laplacian term, which can significantly improve the quality of recovered mesh.

4.1 Combining normal filtering model
Given a noisy mesh Min, we denote its face normals as Nin. To filter Nin, our normal filtering model treats face normals N
as variable and finds them as a solution to the following problem:

min
N∈CN

E𝑓 (N) + 𝛼

2
Etv(N) + 𝛽

2
Ewla𝑝(N), (1)

where 𝛼, 𝛽 are two positive parameters, and CN = {N ∈ R3×T ∶ ||N𝜏 ||2 = 1,∀𝜏}. The variational model (1) consists of the
fidelity, TV, and reweighted Laplacian term.
Fidelity term:

E𝑓 (N) =
∑
𝜏

s𝜏
‖‖‖N𝜏 − Nin

𝜏
‖‖‖2
,

where s𝜏 is the area, and N𝜏 is the normal of triangle 𝜏.
TV term:

Etv(N) =
∑

e
le ‖(∇N)e‖ ,

where le is the length of edge e, and ∇ is the discrete gradient operator of face normal field. This operator is defined on
each edge of the mesh. For its computation, refer to the work of Zhang et al.4

Etv is a TV regularization term applied to the face normal field, which enables sharp features preserving while removing
noise. However, this TV term tends to optimize the face normal field to be a piecewise constant vector field. Thus, it
introduces staircase effects in smooth regions. Moreover, some fine details of the mesh would be sharpened by this term.
Reweighted Laplacian term:

Ewla𝑝(N) =
∑
𝜏

s𝜏
‖‖‖‖‖‖N𝜏 − 𝜉𝜏

∑
𝜏𝑗∈D1(𝜏)

w𝜏𝜏𝑗
N𝜏𝑗

‖‖‖‖‖‖
2

,

where w𝜏𝜏𝑗
is a reweighted term, and 𝜉𝜏 = 1∑

𝜏𝑗∈D1(𝜏)
w𝜏𝜏𝑗

is a normalization factor. To handle smooth regions and avoid

blurring sharp features in this Laplacian term, we define the weight w𝜏𝜏𝑗
as a function about ∇ of the face normal field

given by
w𝜏𝜏𝑗

= s𝜏𝑗 e
−(||(∇N)e||∕𝜌)2 , (2)

where e is the edge shared by triangles 𝜏 and 𝜏 j, s𝜏𝑗 is the weight considering surface sampling rate, and 𝜌 is a user-specified
threshold.

As we can see, both our weighting scheme (2) and the bilateral weighting scheme proposed by Zheng et al.3 use the
Gaussian function to measure the face normal difference of each local region. However, in order to handle considerable
amount of noise, our weighting scheme dynamically updates the Laplacian weights, whereas the bilateral scheme3 does
not (the reason will be explained in Section 4.2).
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4.2 An iterative algorithm to solve the proposed normal filtering model
Due to the nondifferentiability of the TV term and the dynamic changing weights of the Laplacian term, it is challenging
to solve the model (1). In this subsection, we propose an iterative algorithm with ALM to solve it. Recently, variable
splitting and ALM are shown to be very successful to solve 𝓁1-related minimization problems.21,22 Thus, we introduce an
auxiliary variable and use ALM to deal with the TV term. The Laplacian term can be handled by one iterative algorithm,
in which the weights are dynamically updated from the current solution. In each iteration, it consists of two steps: solving
the minimization problem (1) using ALM, and updating Laplacian weights by (2). Because the second step is obvious, we
only introduce the implementation details of the first step.

In order to solve problem (1), we first introduce a new variable p ∈ R3×E and reformulate the problem as follows:

min
N,p

E𝑓 (N) + 𝛼

2
Rtv(p) +

𝛽

2
Ewla𝑝(N) + 𝜓(N)

s.t., p = ∇N,

where

𝜓(N) =

{
0, N ∈ CN

+∞, N ∉ CN.

For the above constrained optimization problem, we define the following augmented Lagrangian function:

(N,p; 𝜆) = E𝑓 (N) + 𝛼

2
Rtv(p) +

𝛽

2
Ewla𝑝(N) + 𝜓(N) +

∑
e

le𝜆e · (pe − (∇N)e) +
r
2
∑

e
le‖pe − (∇N)e‖2

,

where 𝜆 ∈ R3×E is a Lagrange multiplier, and r is a penalty coefficient. This primal variables update procedure can be
separated into two subproblems: the N subproblem and p subproblem.

For N subproblem, we fix the variable p and solve the following minimization problem:

min
N

E𝑓 (N) + 𝛽

2
Ewla𝑝(N) + 𝜓(N) + r

2
∑

e
le

‖‖‖‖‖(∇N)e −
(

pe +
𝜆e

r

)‖‖‖‖‖
2

. (3)

This problem is a quadratic minimization if we ignore 𝜓(N). Here, taking into account the computation efficiency, we
first solve the following quadratic programming:

min
N

E𝑓 (N) + 𝛽

2
Ewla𝑝(N) + r

2
∑

e
le

‖‖‖‖‖(∇N)e −
(

pe +
𝜆e

r

)‖‖‖‖‖
2

(4)

and then project the minimizer to an unit sphere. The quadratic problem (4) has the following first-order optimality
condition:

A + 𝛽LTSL = b, (5)

where A,L, S ∈ RT×T, b ∈ RT×1, and entries of them are

Ai𝑗 =
⎧⎪⎨⎪⎩

2s𝜏i + r
∑

e≺𝜏i

le, i = 𝑗

−rle, i ≠ 𝑗;

Li𝑗 =

{
1, i = 𝑗

−𝜉𝜏i w𝜏i𝜏𝑗 , i ≠ 𝑗;
Si𝑗 =

{
s𝜏i , i = 𝑗

0, i ≠ 𝑗;

bi =2s𝜏i N
in + r

∑
e≺𝜏i

le

(
pe +

𝜆e

r

)
,

where 𝜏 j ∈ D1(𝜏 i) and e = 𝜏i∩𝜏𝑗 . Thus, (5) can be efficiently solved using various well-developed numerical libraries such
as Eigen, Taucs, and Math Kernel Library (MKL)

Next, we solve the p subproblem by fixing the variable N and reformulate it to

min
p

Rtv(p) +
r
𝛼

∑
e

le
‖‖‖‖pe − (∇N)e +

𝜆e

r
‖‖‖‖2
. (6)
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Because p can be decoupled and solved individually, the problem (6) is solved edge by edge. Thus, for each pe, we need
to solve

min
pe

||pe|| + r
𝛼

‖‖‖‖pe − (∇N)e +
𝜆e

r
‖‖‖‖2
,

which has a closed-form solution
pe = max

(
0, 1 − 𝛼

2r||Ψ||
)
Ψ, (7)

where Ψ = (∇N)e −
𝜆e
r

.
In summary, the procedure of solving the model (1) is outlined in Algorithm 1, where Ed is the difference of normal

field between two iterations defined as
Ed =

∑
𝜏

s𝜏
‖‖‖Nk

𝜏 − Nk−1
𝜏

‖‖‖2
.

As can be seen, we use an iteration strategy to solve the model (1). We solve the model with fixed weights exactly in each
iteration and then update the weights according to the current solution for next iteration.

We should point out that if we keep weights of the Laplacian term unchanged, the minimization problem(1) needs
to be solved only one time. This can be considered as an inexact version of Algorithm 1, which is used in the work of
Zheng et al.3 If the noise level is low, this strategy works well. However, when the noise level increases, our experiments
demonstrate that this inexact strategy is hard to obtain satisfactory results, even with fine-tuning parameters. The reason
may be as follows. Because both the noise and sharp features belong to high-frequency signal, the Laplacian weights(2)
directly estimated from the noisy mesh cannot distinguish them clearly. Thus, some noise will leave in flat regions, and
some sharp features will be blurred. In contrast, our method with iteratively updating the weights is able to effectively
improve the denoised result. See the zoomed-in view of Figure 2.

(a) (b) (c) (d)

FIGURE 2 Denoising results of Fandisk (corrupted by Gaussian noise, 𝜎 = 0.2). From left to right: (a) clean mesh, (b) noisy mesh,
(c) result of solving (1) without iteration, and (d) result produced by Algorithm 1 with iteration
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Remark 1. Algorithm 1 is insensitive to the initialization of parameters. In our experiments, the numbers of iterations
C and K are in the range of [10, 30] and [30, 70], respectively. We empirically set the threshold 𝜖 = 1e − 5.

5 ROBUST VERTEX UPDATING

After filtering the face normals by Algorithm 1, mesh vertex positions should be updated to match the filtered face
normals. One famous vertex updating model is to minimize the following quadratic energy:

E(V) =
∑
𝜏

∑
(vi,v𝑗 )∈𝜏

s𝜏(N𝜏 · (vi − v𝑗))2, (8)

where N𝜏 is the filtered normal of triangle 𝜏. This model has a beautiful implementation by Sun et al.2 When the noise
level is low, the method of Sun et al.2 achieves good results. However, when the noise level increases, the recovered vertex
positions deviate far from those of the clean mesh. In this situation, method of Sun et al.2 suffers producing frequent
foldovers. The reason is that the model (8) neglects the orientations of face normals. It only penalizes the nonorthogonality
and cannot distinguish −N𝜏 and N𝜏 .

To overcome this ambiguity problem, we propose a new vertex updating model defined as

Ev =
∑

𝜏=(vi,v𝑗 ,vk)

(
N𝜏 −

(v𝑗 − vi) × (vk − vi)‖‖(v𝑗 − vi) × (vk − vi)‖‖
)2

, (9)

where (vi, vj, vk) are vertices of 𝜏 in anticlockwise order. This model can effectively solve the ambiguity problem, because
it not only considers the orthogonality between the face and its corresponding normal direction but also takes the
orientation of the face into account.

We can reformulate the partial derivatives of (9) with respect to vi as follows:
𝜕Ev

𝜕vi
=

∑
𝜏≺M1(vi)

[
N𝜏 − (N𝜏 ·𝜏)𝜏

]
× (v𝑗 − vk), (10)

where 𝜏 is the updating normal of 𝜏 according to updated v (derivation process of formula in Equation 10 is given
in the Appendix). With the gradient information calculated from (10) and the initial vertex positions, we adopt the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm23 to resolve the model (9). In each iteration, BFGS uses the energy
and gradient evaluated at current and previous iterations.

As we can see in Figure 3, the results produced by Sun et al.2 suffer from severe foldovers (highlighted in red), whereas
our method produces much better results without foldovers (both methods use filtered normals produced by Algorithm 1

Noisy Sun Ours

FIGURE 3 Comparisons of vertex updating methods. The first column shows noisy meshes (corrupted by Gaussian noise, 𝜎 = 0.3). The
second and third columns are results generated by Sun et al.2 and ours (9). The foldovers are highlighted in red
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TABLE 1 The performance of two vertex updating
methods

Foldovers / Time (seconds)
Meshes(|V|, |F|) Sun et al.2 Ours

Twelve(4.6K, 9.2K) 116 / 0.16 0 / 0.43
Merlion(283K, 566K) 8,236 / 3.79 0 / 14.22

as input). This shows that, compared with the method of Sun et al.,2 our method is more robust to the noise level and can
produce better mesh quality.

The performances of the two methods are listed in Table 1. As can be seen, the method of Sun et al.2 is faster than ours,
especially for large meshes.

6 EXPERIMENTS AND COMPARISONS

We evaluate our mesh denoising method on both synthetic data and real scans. The synthetic data are obtained by adding
Gaussian noise in vertex normal directions of clean meshes. All methods tested in this paper have been implemented by
C++; all meshes are rendered in a flat-shading model to show faceting effect.

6.1 Parameters tuning
Our model (1) has two parameters, 𝛼 and 𝛽, used to balance the fidelity, TV, and Laplacian terms.
𝛼 affects sparsity of the model introduced by TV term. Figure 4 demonstrates results of different 𝛼 with fixed 𝛽. As can

be seen, if 𝛼 is zero, sharp features of the result should be blurred, illustrated in Figure 4b, and if 𝛼 is too large, smooth
regions will be oversharpened, showed in Figure 4e. Moreover, there exists a range of 𝛼 for our model (1) producing
visually well results; see Figure 4c,d.
𝛽 has influence on smoothness of the result. Figure 5 shows the results of different 𝛽 with fixed 𝛼. As we can see,

if 𝛽 is zero, the result suffers the staircase effect, showed in Figure 5b; and too large 𝛽 should oversmooth sharp fea-
tures demonstrated in Figure 5e. Again, there exists a range of 𝛽 for our model producing satisfactory results, given in
Figure 5c,d.

Due to the values of 𝛼 and 𝛽 that are highly related to the mesh type and noise level, it is challenging to automatically
determine them. Fortunately, there are several tuning strategies: First, the value of 𝛼 should be bigger than 𝛽 when han-
dling computer-aided design (CAD) meshes, and vice versa when dealing with non-CAD meshes; second, for almost all
examples, 𝛼 and 𝛽 are in the range of [0, 1] and [10, 1000], respectively.

6.2 Experiments on synthetic data
We compare our denoising method denoted as ICNF to TV method,4 𝓁0 minimization,5 the bilateral normal filter,3 and
the method proposed by Sun et al.,4 abbreviated as TV, 𝓁0, ZhengL⧵ZhengG, and SunNF, respectively.

Figure 6 shows the results on CAD meshes consisting of both sharp features and smooth regions. As can be seen,
ICNF, TV, and 𝓁0 can preserve the sharp features. However, both TV and 𝓁0 suffer from the undesired staircase effect in
smoothly curved regions, and this phenomenon is serious for 𝓁0; see the zoomed-in view in Figure 6c,d. On the contrary,

(a) (b) (c) (d) (e)

FIGURE 4 Denoising results for 𝛼 with fixed 𝛽. From left to right: input noisy mesh (corrupted by Gaussian noise, 𝜎 = 0.15) and results
with different 𝛼. (a) noisy, (b) 𝛼 = 0, (c) 𝛼 = 0.04, (d) 𝛼 = 0.1, and (e) 𝛼 = 1.0
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(a) (b) (c) (d) (e)

FIGURE 5 Denoising results for 𝛽 with fixed 𝛼. From left to right: input noisy mesh (corrupted by Gaussian noise, 𝜎 = 0.15) and results
with different 𝛽. (a) noisy, (b) 𝛽 = 0, (c) 𝛽 = 120, (d) 𝛽 = 600, and (e) 𝛽 = 1, 400

(a) (b) (c) (d) (e) (f) (g)

FIGURE 6 Comparison of denoising methods for CAD meshes (corrupted by Gaussian noise, 𝜎 = 0.15). The second and fourth rows are
the zoomed-in view. (a) noisy, (b) ICNF, (c) TV, (d) 𝓁0, (e) ZhengL, (f) ZhengG, (g) SunNF

(a) (b) (c) (d) (e) (f) (g)

FIGURE 7 Comparison of denoising methods on non-CAD meshes (corrupted by Gaussian noise, 𝜎 = 0.2). The second and fourth rows
are the zoomed-in view. (a) noisy, (b) ICNF, (c) TV, (d) 𝓁0, (e) ZhengL, (f) ZhengG, (g) SunNF

ZhengL⧵ZhengG and SunNF recover smooth regions well but blur some sharp features; see the results in Figure 6e–g.
Thus, the compared four methods either preserve sharp features or recover smooth regions well, whereas ICNF can
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effectively deal with both. For CAD meshes, visual comparisons in Figure 6 show that ICNF is noticeably better than the
other four methods.

Figure 7 demonstrates the results on non-CAD meshes. As we can see, TV and 𝓁0 tend to oversharp fine details, espe-
cially 𝓁0 method, whereas SunNF blurs some fine details; see the zoomed-in view in Figure 7c,d,g. In contrast, both ICNF
and ZhengL⧵ZhengG produce visually satisfactory results. However, from the metric errors introduced in next the sub-
section, we find that the errors of ICNF are always lower than ZhengL⧵ZhengG. Thus, for non-CAD meshes, ICNF also
yields better results than the other four methods.

6.3 Quantitative comparisons
We employ the mean square angular error to measure the error produced by normal filtering method, and we use the
L2 vertex-based error (Ev,2) to measure the error generated by the vertex updating scheme. The evaluation results about
these two metrics of the examples, shown in Figures 6 and 7, are listed in Table. 2. As we can see, mean square angular
error by ICNF is obviously smaller than all the other methods. For CAD meshes, ICNF outperforms the other methods in
Ev,2. For non-CAD meshes, although the results by ZhengG are better than others in Ev,2, in those cases, results by ICNF
are close to the best ones.

The CPU costs of all the methods are also summarized in Table. 2. As can be seen, SunNF is the fastest one, whereas
𝓁0 is the slowest. ICNF is faster than 𝓁0, and slower than the others.

6.4 Experiments on real scans
We testify the validity of ICNF on real scans; see Figure 8. One can see that ICNF also can yield satisfactory results for the
real scans.

TABLE 2 Quantitative comparisons for all the five denoising methods

Mean square angular error(×10−3) , Ev,2(×10−3); Time (seconds)
Meshes(|V|, |F|) ICNF TV 𝓵0 ZhengL ZhengG SunNF

Block(8.7K, 17.6K) 4.23, 1.69; 5.94 4.70, 1.93; 0.67 5.39, 2.09; 6.24 10.2, 2.81; 0.21 9.78, 2.84; 1.3 6.66, 2.07; 0.42
Fandisk(6.5K, 12.9K) 1.67, 2.04; 3.15 2.12, 2.13; 0.44 3.24, 2.22; 3.47 4.94, 2.24; 0.11 4.09, 2.06; 0.65 3.92, 2.66; 0.3
Joint(20.9K, 41.8K) 1.22, 1.47; 18.3 2.08, 1.53; 1.78 4.43, 2.02; 23.6 2.94, 1.97; 0.49 3.39, 2.64; 7.92 2.07, 2.46; 1.2
Bunny(34.9K, 69.5K) 16.3, 1.54; 28.4 18.3, 1.6; 3.85 22.4, 2.49; 34.6 17.7, 1.53; 0.77 16.8, 1.37; 8.62 24.2, 2.28; 1.96
Dragon(161K, 323K) 16.7, 0.48; 71.3 23.8, 0.6; 27.3 35, 0.76; 187.5 29.1, 0.71; 4.72 17, 0.58; 5.56 25, 1.14; 7.94

FIGURE 8 Denoising results of real scans
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7 CONCLUSION

In this paper, we first present a variational model to restore the noisy normal vector field. It combines TV and anisotropic
Laplacian regularization. Our model can preserve sharp features and also do a good job on smooth regions. A novel vertex
updating scheme is also introduced to overcome the orientation ambiguity problem. We compare our denoising method
with several state-of-the-art methods on different types of meshes visually and quantitatively. The experimental results
demonstrate the robustness and efficiency of ours. We believe that our denoising method can be applied to more general
meshes compared with the selected state-of-the-art denoising methods.

Limitation and future work. Our mesh denoising method is computationally expensive for large meshes. A future
work is to accelerate our method and decrease CPU costs.
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APPENDIX

Denoting D1 = (vj − vi) × (vk − vi),D2 = (vk − vj) × (vi − vj), and D3 = (vi − vk) × (vj − vk), we can write 𝜏 =
D1
2s𝜏

= D2
2s𝜏

= D3

2s𝜏
.

By using the above facts, we take the derivative of Equation (9) with respect to vi and then obtain

𝜕Ev

𝜕vi
= 2

∑
𝜏≺M1(vi)

(
N𝜏 −𝜏

) 𝜕𝜏

𝜕vi

= 2
∑

𝜏≺M1(vi)

(
N𝜏 −𝜏

) [(𝜕𝜏

𝜕D1

𝜕D1

𝜕vi

)
+
(
𝜕𝜏

𝜕D2

𝜕D2

𝜕vi

)
+

(
𝜕𝜏

𝜕D3

𝜕D3

𝜕vi

)]
= 6

∑
𝜏≺M1(vi)

1
2s𝜏

[N𝜏 − (N𝜏 ·𝜏)𝜏] × (v𝑗 − vk).

Because the BFGS algorithm can ignore the weighting parameters involved in the above equation, for simplicity, we
can further rewrite it as

𝜕Ev

𝜕vi
=

∑
𝜏≺M1(vi)

[N𝜏 − (N𝜏 ·𝜏)𝜏] × (v𝑗 − vk).
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