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Mesh denoising is a fundamental, yet not well-solved problem in geometry processing. 
The main challenge is to remove noise while preserving geometric features and preventing 
unnatural effects, such as blurring of sharp features and staircase effects in smoothly 
curved regions. State-of-the-art mesh denoising methods still struggle with this issue. In 
the paper, we first propose a novel anisotropic second order regularization method to 
restore face normals of the noisy mesh, and then reconstruct vertex positions of the mesh 
according to the filtered face normals. The proposed anisotropic second order regularization 
can maximally recover the underlying surface from the noisy mesh without introducing 
the unnatural effects. Numerically, an efficient algorithm based on variable splitting and 
augmented Lagrangian method is proposed to solve the problem. Extensive experiments 
on a variety of meshes demonstrate that our mesh denoising method outperforms all the 
compared state-of-the-art methods visually and quantitatively.

© 2019 Published by Elsevier B.V.

1. Introduction

Mesh denoising, which aims to restore high quality meshes from noisy inputs, is an important task in digital geometry 
processing. The denoised meshes can be used in downstream geometry applications, such as mesh reconstruction, segmen-
tation, animation and visualization. Recently, due to the rapid development of consumer-grade scanner devices, the design 
of effective mesh denoising methods has became increasingly attractive. The main challenge of mesh denoising is to re-
move noise while preserving geometric features as well as not introducing unnatural effects. This problem becomes more 
difficult when noisy meshes consisting of sharp features (including sharp edges and corners) and smooth regions (including 
smoothly curved regions and fine details).

Over the last decade, great efforts have been made on the mesh denoising problem. Many noticeable methods have 
been proposed, for examples, bilateral weighting normal filtering (Zheng et al., 2011), �0 minimization (He and Schaefer, 
2013), TV normal filtering (Zhang et al., 2015a) and robust and high fidelity mesh denoising (Yadav et al., 2018b). Al-
though these state-of-the-art methods have achieved great successes, each of them still has limitations in some respects. 
Specifically, bilateral weighting normal filtering (Zheng et al., 2011) usually blurs sharp features when the noise level is 
high, and thus cannot produce satisfactory results for the meshes containing sharp features. The recent �0 minimization 
(He and Schaefer, 2013) and TV normal filtering (Zhang et al., 2015a) are able to preserve sharp features well. However, 
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these two methods suffer from undesired staircase effects in smoothly curved regions, especially for �0 minimization (He 
and Schaefer, 2013). Moreover, when the noise level increases, �0 minimization (He and Schaefer, 2013) will sharpen some 
fine details and produce false edges in smooth regions. The method proposed by Yadav et al. (2018b) can robustly generate 
high fidelity results from noisy inputs, but it sometimes oversmoothes fine details. These unnatural effects produced by 
the aforementioned state-of-the-art methods will degrade the quality of denoising results and cause errors in downstream 
geometry applications.

To overcome the above mentioned limitations, we first propose a second order regularization model by introducing a 
novel anisotropic second order operator. The proposed model is applied to the face normal field of the mesh. Then, vertex 
positions of the mesh can be reconstructed according to the filtered face normals. Taking a noisy mesh as input, our mesh 
denoising method preserves geometric features well and does not introduce unnatural effects. Specifically, the contributions 
of the paper are listed as follows:

• We design an anisotropic second order difference operator over triangulated surfaces and propose a normal filtering 
model using this operator. The proposed second order regularization model can preserve geometric features well and 
prevent unnatural effects.

• An efficient algorithm based on variable splitting and augmented Lagrangian method is presented to solve the problem.
• We discuss differences between regularization models based on our anisotropic second order, gradient and Laplace 

operators.

The rest of the paper is organized as follows. Section 2 briefly reviews prior state-of-the-art mesh denoising methods. In 
section 3, we introduce a novel anisotropic second order operator over triangulated surfaces. In section 4, we first propose 
a second order normal filtering model, which can be solved by an iterative algorithm. Then, we discuss differences between 
the second order, gradient and Laplace operators. The comparison of regularization models based on these operators is given 
at the end of section 4. Our mesh denoising method is compared to the state-of-the-art methods in section 5. Section 6
concludes the paper.

2. Related work

Mesh denoising is a long standing problem, which has been studied for years. Although there are lots of mesh denoising 
works in literature, reviewing all of the existing methods is beyond the scope of this paper. Interested readers can refer 
to the works (Chen and Cheng, 2005; Hildebrandt and Polthier, 2010) for a comprehensive review. Here, we only review 
noticeable methods which are closely related to this paper.

Filtering methods are widely applied in mesh denoising for their simplicity and efficiency, which can be classified into 
isotropic schemes and anisotropic schemes. Although the isotropic schemes (Taubin, 1995; Desbrun et al., 1999) can sup-
press noise, they smooth geometric features. Later on, in order to preserve geometric features, many anisotropic schemes 
were proposed (Desbrun et al., 2000; Taubin, 2001; Yagou et al., 2002; Tasdizen et al., 2002; Bajaj and Xu, 2003; Wang, 
2006). When the noise level is low, the anisotropic schemes can preserve geometric features while removing noise. However, 
when the noise level increases, the anisotropic schemes will blur geometric features, especially for sharp features. Recently, 
bilateral filtering methods, adapted from image processing, have achieved great successes in mesh denoising (Jones et al., 
2003; Fleishman et al., 2003). Since the bilateral filtering methods also belong to anisotropic schemes, they suffer from the 
problem of blurring sharp features. More recently, some methods (Zheng et al., 2011; Zhang et al., 2015b) applied the bi-
lateral filtering to face normals, which can preserve sharp features well. However, when the noise level is high, the bilateral 
normal filtering proposed by Zheng et al. (2011) still blurs sharp features. The guided normal filtering (Zhang et al., 2015b) 
can preserve sharp features well, but it sometimes lacks the robustness to mesh topology. By using the robust error norm, 
the robust normal filtering (Yadav et al., 2018b) can also preserve sharp features. Yet, this method sometimes oversmoothes 
fine details.

In recent years, optimization-based methods have gained popularity in mesh denoising. Zheng et al. (2011) proposed a 
global normal filtering model based on bilateral weighting Laplacian, which can effectively remove noise while recovering 
fine details. Yet, it is difficult to generate satisfactory results when the noise level is high, especially for the noisy input with 
sharp features. By using both static and dynamic guidances, Zhang et al. (2018) introduced a filtering method, which can 
remove noise while preserving geometric features. Yadav et al. (2018a) proposed a framework optimizing the element-based 
normal voting tensor for feature-preserving mesh denoising. Moreover, efforts of nonlocal similarity have been made for 
mesh denoising by Li et al. (2018). Besides, the concept of sparsity has been proved successful in image processing for its 
excellent edge-preserving property (Wang et al., 2008; Yang et al., 2009; Wu and Tai, 2010; Xu et al., 2011; Hu and Jacob, 
2012; Wu et al., 2012). Many researchers extended sparsity-based methods from image processing to geometry processing 
for preserving sharp features (He and Schaefer, 2013; Zhang et al., 2015a; Wu et al., 2015; Lu et al., 2017). He and Schaefer 
(2013) proposed using �0 minimization to remove noise by inducing the sparsity for an edge-based operator. Total variation 
(TV) regularization was applied on face normals for its well edge-preserving property (Zhang et al., 2015a). Wu et al. 
(2015) proposed a variational method combining a TV regularization and an �1 fidelity term. Lu et al. (2017) introduced 
an �1-median normal filter to handle meshes with different kinds of noise and irregular surface sampling. Although these 
sparsity-based methods can preserve sharp features well while removing noise, they suffer undesired staircase effects in 
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Fig. 1. (a) The illustration of second order variation over the line l colored in red; (b), (c) and (d) are the illustrations of three boundary conditions.

smoothly curved regions for their sparsity requirement. These unnatural effects in smooth regions will degrade the quality 
of denoising results.

Wang et al. (2014) proposed a method based on �1-analysis compressed sensing to decouple features and noise. However, 
when the mesh is corrupted by high level noise, it is a challenge for their method to distinguish the features from the noise. 
The reason is that both the features and the noise belong to high frequency signals. More recently, a data-driven method 
(Wang et al., 2016) has been proposed for mesh denoising. This method first learns non-linear regression functions which 
map the filtered face normal descriptors to the face normals of the clean mesh, then uses the learned functions to compute 
filtered face normals. This method can efficiently remove noise without the assumptions about geometric features of the 
underlying surface and noise patterns. However, the performance of this data-driven method depends on the completeness 
of the training data set.

3. Anisotropic second order operator on triangulated surfaces

In this section, we introduce notations followed by definitions of a second order operator over triangulated surfaces. A 
mesh of arbitrary topology with no degenerate triangles in R3 is represented as M . The set of vertices, edges, and triangle 
faces of M are denoted as {vi : i = 1, 2, · · · , V}, {ei : i = 1, 2, · · · , E}, and {τi : i = 1, 2, · · · , T}, respectively. Here V, E, and T
are the numbers of vertices, edges, and faces of M .

Here, we define a second order difference operator over triangulated surfaces. Let e+ and e− be any two edges of the 
triangle τ , and l be a line connecting the midpoints of e+ and e−; see the illustration of the descriptions in Fig. 1a. Assume 
u = (u1, u2, · · · , uT) ∈ RT is a scalar field on the triangulated surface M . This means that the value of u restricted on the 
triangle τ is uτ . For any u ∈RT, the isotropic second order variation of u over the line l can be defined as

Diso(u)|l = (uτ+ − uτ ) − (uτ − uτ−)

= uτ+ + uτ− − 2uτ .

The above definition is similar to the definition of second order difference in image processing. Without loss of generality, 
by considering boundary conditions (see Figs. 1b, 1c and 1d), for any u ∈RT, we can define

Diso(u)|l =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

uτ+ + uτ− − 2uτ , e+ /∈ ∂M and e− /∈ ∂M,

uτ− − uτ , e+ ∈ ∂M and e− /∈ ∂M,

uτ+ − uτ , e+ /∈ ∂M and e− ∈ ∂M,

0, e+ ∈ ∂M and e− ∈ ∂M.

Inspired by Zheng et al. (2011), for preserving geometric features, we describe the second order variation of u in an 
anisotropic manner

Dani(u)|l =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

we+(uτ+ − uτ ) − we−(uτ − uτ−), e+ /∈ ∂M and e− /∈ ∂M,

we−(uτ− − uτ ), e+ ∈ ∂M and e− /∈ ∂M,

we+(uτ+ − uτ ), e+ /∈ ∂M and e− ∈ ∂M,

0, e ∈ ∂M and e ∈ ∂M,
+ −
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where the weight we is defined as

we = exp(−‖ue,1 − ue,2‖2/2σ 2). (1)

ue,1 and ue,2 of (1) are two values restricted on triangles sharing the common edge e.
Thus, for any u ∈RT, we can define the anisotropic second order difference operator as

D : u �→ D(u), D(u)|l = Dani(u)|l, ∀l. (2)

Furthermore, we extend the above concepts to handle vectorial data. In particular, for a N-channel vectorial field

u = u × · · · × u︸ ︷︷ ︸
N

∈RN×T,

the second order operator D(u) can be computed channel by channel.

4. Variational mesh denoising

Our method belongs to two-stage mesh denoising methods, i.e., face normal filtering followed by vertex updating (Zheng 
et al., 2011; Zhang et al., 2015a,b; Lu et al., 2017; Yadav et al., 2018b). First, we apply a second order regularization method 
to optimize face normals of the noisy mesh. Then, we reconstruct the vertex positions according to the filtered face normals. 
At last, we discuss the normal filtering models based on different operators including the anisotropic second order, gradient 
and Laplace operators.

4.1. Anisotropic second order normal filtering

To optimize face normals of the noisy input, we present a variational model with an anisotropic second order regular-
ization. An algorithm based on variable splitting and augmented Lagrangian method is introduced to solve the problem.

4.1.1. Normal filtering model
Given a noisy mesh Min , we denote its face normals as Nin . To remove noise of Nin , we treat the face normals N as a 

variable and propose the following normal filtering model:

min
N∈CN

{
α

2

∑
τ

area(τ )‖Nτ − Nin
τ ‖2 +

∑
l

len(l)‖D(N)|l‖
}

, (3)

where CN = {N ∈R3×T : ‖Nτ ‖2 = 1, ∀τ }, α is a positive parameter, area(τ ) is the area of triangle τ and len(l) is the length 
of line l. The first term of model (3) is the fidelity term, which helps the solution to harmonize well with the input face 
normals. The second term is the smooth term based on the anisotropic second order operator (2). This term can make the 
solution smooth and feature-preserving.

4.1.2. Augmented Lagrangian method for solving the normal filtering model
Due to the nondifferentiability and nonlinear constraints of the normal filtering model (3), it is difficult to directly solve 

the problem. Fortunately, variable splitting and augmented Lagrangian method (ALM) are well known for their efficiency in 
�1 related optimization problems (Wu and Tai, 2010; Wu et al., 2012; Zhang et al., 2015a). Here, we introduce an auxiliary 
variable and employ ALM to solve the minimization problem of (3). Furthermore, since the weights (1) of the second order 
operator are estimated from the noisy input, we dynamically update them at each iteration for improving the quality of the 
denoising result.

We first introduce an auxiliary variable P and reformulate the problem (3) as

min
N,P

R(P) + ψ(N) + α

2

∑
τ

area(τ )‖Nτ − Nin
τ ‖2

s.t., P = D(N),

(4)

where R(P) = ∑
l

len(l)‖Pl‖, and

ψ(N) =
{

0, N ∈ CN

+∞, N /∈ CN.

For the above constrained optimization problem, we define the following augmented Lagrangian function

L(N,P;λ) = R(P) + ψ(N) + α

2

∑
area(τ )‖Nτ − Nin

τ ‖2 +
∑

len(l)
(
λl · (Pl − D(N)|l)

)
+ r

2

∑
len(l)‖Pl − D(N)|l‖2,
τ l l
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Fig. 2. Denoising results of Part (corrupted by Gaussian noise, standard deviation = 0.2 mean edge length). From left to right: clean mesh, noisy mesh, 
results of solving model (3) with fixed weights and dynamic weights.

where λ is a Lagrange multiplier and r is a positive penalty coefficient. This primal variables update procedure can be 
separated into two subproblems: the N-subproblem and P-subproblem.

For solving the N-subproblem, we fix the variable P and solve the following minimization problem

min
N

ψ(N) + α

2

∑
τ

area(τ )‖Nτ − Nin
τ ‖2 + r

2

∑
l

len(l)‖D(N)|l − (Pl + λl

r
)‖2.

This problem is a quadratic optimization with the unit normal constraints ψ(N). Here, we adopt an approximate strategy to 
solve the problem. We first ignore ψ(N) and solve the following quadratic programming

min
N

α

2

∑
τ

area(τ )‖Nτ − Nin
τ ‖2 + r

2

∑
l

len(l)‖D(N)|l − (Pl + λl

r
)‖2, (5)

then project the solution to a unit sphere. The solution of the problem (5) is achieved by a sparse linear system, which can 
be solved using various numerical packages such as Eigen, Taucs, and Math Kernel Library (MKL).

Similarly, we can solve the P-subproblem by fixing the variable N, and solve

min
P

R(P) + r

2

∑
l

len(l)‖Pl − (D(N)|l − λl

r
)‖2. (6)

As the problem (6) is decomposable, we can solve each Pl independently. For each Pl , we need to solve the following 
problem

min
Pl

‖Pl‖ + r

2
‖Pl − (D(N)|l − λl

r
)‖2

which has a closed form solution as

Pl = max(0, 1 − 1

r‖	‖ )	, (7)

where 	 = D(N)|l − λl
r .

In summary, the overall algorithm is outlined in Algorithm 1. In each iteration, Algorithm 1 first solves the above two 
subproblems, and then updates the Lagrange multiplier and weights (1). We dynamically update the weights (1) in each 
iteration according to the updated N in the previous step. This dynamic weighting strategy makes our algorithm be more 
robust to the input noisy mesh. The reason is explained as follows. Since noise and sharp features belong to high frequency 
signals, the weights (1) estimated from the noisy mesh may not be accurate. If we fix these inaccurate weights during the 
iterations, some of the noise will be left in the denoising result, and some sharp features will be blurred. This phenomenon 
will become more serious, when the noise level increases. In contrast, Algorithm 1 with the dynamic weighting scheme can 
greatly improve the quality of the denoised result. An example can be seen in Fig. 2.

4.2. Vertex updating

After obtaining filtered face normals by minimizing the normal filtering model (3), we reconstruct the denoised mesh 
using the vertex updating scheme presented by Zhang et al. (2018). This vertex updating scheme can overcome the trian-
glewise orientation ambiguity problem produced by the traditional vertex updating scheme proposed by Sun et al. (2007). 
Since the scheme proposed by Zhang et al. (2018) is iterative, the number of iterations is empirically fixed as 30 in our 
experiments for producing well results. Due to this vertex updating scheme is not our contribution, we refer readers to the 
work (Zhang et al., 2018) for further information.
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Algorithm 1: ALM for Solving Anisotropic Second Order Normal Filtering Model (3).

Initialization: N−1 = 0, P−1 = 0, λ0 = 0, k = −1, K = 70, ε = 1e − 5;
repeat

Solve N-subproblem
For fixed (λk, Pk−1), compute Nk from (5);

Normalize Nk ;
Solve P-subproblem

For fixed (λk, Nk), compute Pk from (7);
Update Lagrange multiplier

λk+1 = λk + r(Pk − D(Nk));

Update weights (1) according to Nk ;

until
∑
τ

area(τ )‖Nk
τ − Nk−1

τ ‖2 < ε or k ≥ K ;

Fig. 3. The illustration of (a) first order difference over edge e, (b) second order difference over line l and (c) Laplacian coordinate over triangle τ .

4.3. Discussion on regularization models using the anisotropic second order, gradient, and Laplace operators

In this subsection, we compare four regularization models applied in the face normal field. These models are based on 
the second order, gradient and Laplace operators respectively. Basically, discretizations of the three operators are totally 
different. Our anisotropic second order operator (2) can be seen as a set of second order differences defined over lines 
of the mesh; see Fig. 3b. The discretization of gradient operator is the set of first order differences over edges (Zhang et 
al., 2015a); see Fig. 3a. The Laplace operator can be seen as a set of Laplacian coordinates over triangle faces (Zheng et 
al., 2011); see Fig. 3c. Without considering boundary conditions, the numbers of face elements related to the first order 
difference, second order difference and Laplacian coordinate are 2, 3, and 4, respectively.

The regularization models based on these three operators also exhibit different performances. For clarity and fairness, 
we introduce two �1-norm normal filtering models using the aforementioned gradient and Laplace operators respectively. 
The model using the gradient operator is given as

min
N∈CN

{
α

2

∑
τ

area(τ )‖Nτ − Nin
τ ‖2 +

∑
e

len(e)‖G(N)|e‖
}

, (8)

where G is the gradient operator defined by Zhang et al. (2015a). The model with the Laplace operator is designed as

min
N∈CN

{
α

2

∑
τ

area(τ )‖Nτ − Nin
τ ‖2 +

∑
τ

area(τ )‖L(N)|τ ‖
}

, (9)

where L is the Laplace operator defined by Zheng et al. (2011). Then, we compare the denoising results produced by the 
normal filtering models (3), (8) and (9). To further show abilities of the above models, we also compare them with the 
global normal filtering model proposed by Zheng et al. (2011), which is actually the �2-norm Laplacian normal filtering 
model. As we can see in Fig. 4, all of these four models can effectively remove noise. However, the result produced by 
the total variation normal filtering model (8) suffers staircase effects in smooth regions; see Fig. 4c. Although the �1-norm 
Laplacian model (9) preserves sharp features better than the �2-norm Laplacian model proposed by Zheng et al. (2011), 
both of them blur sharp features in some extent. In contrast, our second order regularization model (3) can produce the 
satisfactory result without unnatural effects; see Fig. 4b.

Compared to the other two potential operators, our second order operator has the following advantages. First, the 
�1-norm regularization model (3) with our second order operator can overcome the staircase effect problem introduced 
by the model (8) using the gradient operator. The reason will be explained by one 1D example in the following. Second, the 
number of face elements related to our second order operator is less than those of the Laplace operator. That is to say, for 
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Fig. 4. Denoising results of Fandisk (corrupted by Gaussian noise, standard deviation = 0.2 mean edge length). From left to right: noisy mesh, denoising 
results produced by our second order regularization model (3), total variation normal filtering model (8), �1-norm Laplacian normal filtering model (9), and 
global bilateral normal filtering model proposed by Zheng et al. (2011), respectively.

Fig. 5. Denoising results for α with fixed σ . From left to right: noisy mesh (corrupted by Gaussian noise, standard deviation = 0.2 mean edge length) and 
results with different α.

preserving sharp features, our second order operator is more robust than the Laplace operator. To intuitively show the above 
advantages of our second order operator, we give a 1D example. Since our second order operator and the Laplace operator 
have the same discretization in 1D, we only compare our second order operator with the first order one. Suppose that we 
observe a 1D signal with the values {1, 2, 3, 4, 5, 6} at consecutive locations. In some sense, such a signal can be consid-
ered to be smooth. However, with the appropriate parameter setting, the first order model (8) may produce the solution 
as {2, 2, 2, 5, 5, 5} (considering the sum of first order variations of this solution), which has a staircase between 2 and 5. 
However, if we use the second order model (3) to deal with the observed 1D signal, the solution may be just {1, 2, 3, 4, 5, 6}. 
In contrast to the previous solution, there is no staircase effect in the latter solution because the second order variations 
of this solution vanish everywhere. We believe that this aspect is the main distinguishing feature of the proposed approach 
which leads to better experimental results.

5. Experimental results and comparisons

We evaluate our mesh denoising method ASO on various kinds of CAD, non-CAD and raw scanned meshes. The tested 
meshes are corrupted by either synthetic or raw scanned noise. The synthetic noise is generated by a zero-mean Gaussian 
function with standard deviation proportional to the mean edge length of the ground truth shape. We provide visual and 
quantitative comparisons of our mesh denoising method to state-of-the-art methods including robust and high fidelity mesh 
denoising (Yadav et al., 2018b), TV normal filtering (Zhang et al., 2015a), �0 minimization (He and Schaefer, 2013), and 
local and global bilateral normal filtering methods (Zheng et al., 2011), abbreviated as RHM, TV, �0, LocalBF, and GlobalBF, 
respectively. For the method RHM, we perform the code provided by its authors; For the other four methods, we have 
implemented them based on their published articles by using C++. All of the examples are run on a laptop with a Intel i7 
core 2.6 GHz processor and 8 GB RAM. For showing the faceting effect, all of the examples are rendered in the flat-shading 
model.

5.1. Parameter choices

To the best of our knowledge, most mesh denoising methods have parameters, which need to be tuned manually for 
producing satisfactory results. Our method ASO also has two parameters, i.e., α and σ . α is used to balance the fidelity and 
smooth terms of the normal filtering model (3), and σ is the kernel width of the Gaussian function in the smooth term of 
(3).

The parameter α affects the degree of denoising results. Fig. 5 shows results of different α with fixed σ . As we can see 
in Fig. 5b, if α is too large, the result will be close to the noisy input. The noise cannot be effectively removed. Instead, if α
is too small, geometric features and fine details will be blurred, illustrated in Fig. 5e. Beyond that, there exists a range of α
for our method ASO producing visually well results, shown in Figs. 5c and 5d. To produce satisfactory results, we empirically 
set α in the range of [40, 600] for CAD meshes, and [1000, 3500] for non-CAD and scanned meshes. Moreover, α should be 
set with a smaller value for a higher level of noise, and vice versa.
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Fig. 6. Denoising results for σ with fixed α. From left to right: noisy mesh (corrupted by Gaussian noise, standard deviation = 0.2 mean edge length) and 
results with different σ .

The parameter σ controls the feature-preserving ability of our method ASO. Fig. 6 demonstrates some results of different 
σ with fixed α. If σ is too small, some noise will be left in the result demonstrated in Fig. 6b. The reason is that, some of 
the noise will be considered as features when σ is too small. As we can see in Figs. 6c, 6d, and 6e, with the increasing of σ , 
more and more geometric features are smoothed. More specifically, when σ = 0.8, the shallow edge of the tested mesh is 
blurred showed in Fig. 6d. When σ is too large, some large-scale features (sharp edges and corners) are blurred; see Fig. 6e.

5.2. Qualitative comparisons and examples

In this subsection, we compare the performance of our mesh denoising method ASO with those of the aforementioned 
state-of-the-art methods (RHM, TV, �0, LocalBF, and GlobalBF) on both CAD and non-CAD meshes as well as raw scanned 
meshes. For each method, we carefully tune its parameters for producing visually optimal results.

Fig. 7 demonstrates results on CAD meshes containing both sharp features and smooth regions (including smoothly 
curved and flat regions). As we can see, TV and �0 preserve sharp features well. However, TV suffers from staircase effects 
in smoothly curved regions; see Fig. 7d. This phenomenon is more serious for �0, which produces some false edges in 
smooth regions, shown in Fig. 7e. The reasons are as follows. TV uses low order information of the mesh, which is not suit 
to describe piecewise smooth signals. �0 produces these artifacts for its high sparsity requirement. On the contrary, RHM, 
LocalBF, and GlobalBF do a good job of recovering smooth regions, but they blur sharp features in varying degrees; see 
Figs. 7c, 7f, and 7g. The reason is that both LocalBF and GlobalBF as well as RHM cannot clearly distinguish sharp features 
from noise. As a result, the state-of-the-art methods can either handle sharp features or smooth regions well. Compared to 
these methods, our method ASO can preserve sharp features and simultaneously recover smooth regions well; see Fig. 7b. 
Thus, for CAD meshes, the visual comparisons in Fig. 7 show that ASO is noticeably better than all the other compared 
methods.

In Fig. 8, we show results on non-CAD meshes with fine details. As we can see, our method ASO and all the other 
state-of-the-art methods can remove noise effectively. However, TV tends to sharpen the fine details, shown in Fig. 8d. Due 
to the high sparsity requirement, �0 makes this phenomenon even worse. It flattens a lot of fine details; see Fig. 8e. In 
contrast, RHM oversmoothes some of the fine details as shown in Fig. 8c. Compared to these methods, ASO, LocalBF, and 
GlobalBF generate visually better results; see Figs. 8b, 8f, and 8g. However, from the quantitative comparison demonstrated 
in subsection 5.3, we find errors of ASO are always lower than both LocalBF and GlobalBF. Thus, for non-CAD meshes, ASO 
produces better results than all the other compared methods.

Fig. 9 shows denoising results on the real scanned mesh. As we can see, our method ASO, TV, and LocalBF produce 
visually well results; see Figs. 11b, 11d, and 11f. In contrast, RHM and GlobalBF blur the geometric features shown in 
Figs. 11c and 11g. �0 suffers from serious staircase effects in smooth regions illustrated in Fig. 11e. Recently, more and more 
scanned meshes have been captured by Kinect sensors. Thus, we also verify the effectiveness of ASO on meshes produced 
by Kinect. The results are demonstrated in Fig. 10. As we can see, even for the meshes produced by Kinect with the high 
level of noise, ASO still can suppress noise effectively while preserving most geometric features.

Our anisotropic second order operator is computed irrespective of size of neighbor triangles that makes our denoising 
method cannot deal with highly irregular sampling noisy meshes; see subsection 5.4 for more details. However, due to our 
second order operator is scaled by the mid-line, our mesh denoising method still has some ability to deal with irregular 
sampling meshes. As we can see in Fig. 11, for the noisy mesh without extremely irregular sampling, our method is better 
than all the other compared methods.

We also show the robustness of our method against different levels of noise in Fig. 12. As can be seen in Figs. 12a, 
12b, and 12c, our method ASO can effectively remove noise while preserving sharp features when the noise level is smaller 
than the feature size. On the contrary, when the noise level is bigger than the feature size, our method cannot produce the 
satisfactory result; see Fig. 12d for example.

5.3. Quantitative comparisons

The above qualitative comparisons show that our method ASO can produce visually better results than all the other five 
state-of-the-art methods. In this subsection, we further compare these methods quantitatively. We use two error metrics, 
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Fig. 7. Comparisons of denoising methods on CAD meshes (corrupted by Gaussian noise, standard deviation = 0.2 mean edge length). From left to right: 
input noisy meshes, denoising results produced by our method ASO, RHM (Yadav et al., 2018b), TV (Zhang et al., 2015a), �0 (He and Schaefer, 2013), LocalBF 
(Zheng et al., 2011), and GlobalBF (Zheng et al., 2011). The even rows are zoomed-in views.

Table 1
Quantitative evaluation results of Figs. 7, 8, and 11 for all the tested mesh denoising methods.

Meshes(|V |, |F |) MASE(×10−3), E v,2(×10−3); Time (in Seconds)

ASO RHM TV �0 LocalBF GlobalBF

Block(8.8K, 17.6K) 3.90, 1.76; 4.02 4.20, 3.20; 14.0 5.10, 1.83; 1.02 5.70, 2.48; 8.19 9.80, 2.75; 1.48 12.5, 3.23; 0.31
Casting(19.4K, 38.8K) 4.50, 0.98; 15.3 5.05, 1.38; 27.9 5.30, 1.02; 2.84 6.30, 1.78; 14.5 7.80, 1.06; 0.84 8.70, 1.14; 0.30
Joint(20.9K, 41.8K) 2.30, 1.62; 16.7 4.03, 2.39; 39.6 3.20, 2.25; 1.94 3.99, 1.94; 26.4 6.30, 3.56; 8.44 6.40, 2.53; 0.91
Gargoyle(25K, 50K) 18.7, 1.34; 19.1 46.5, 1.88; 87.7 45.0, 1.63; 5.49 38.8, 2.0; 27.4 19.0, 1.04; 1.45 20.0, 1.31; 0.86
Bunny(34.8K, 69.7K) 16.9, 1.48; 26.7 26.9, 2.65; 76.9 21.2, 1.87; 6.49 31.4, 3.61; 38.3 17.6, 1.50; 2.97 26.4, 2.10; 1.19
Planck(30.9K, 61.8K) 18.0, 1.49; 26.1 25.6, 2.66; 97.9 29.0, 1.36; 11.9 33.2, 1.89; 56.6 25.8, 2.40; 1.98 20.2, 1.89; 3.94

mean square angular error (MSAE) and L2 vertex-based error (E v,2), to measure the fidelity of the denoising result to the 
ground truth shape. Specifically, MSAE is to estimate the mean square angular error between face normals of the ground 
truth shape and those of the denoising result. E v,2 is to measure the positional error between the clean mesh and the 
denoised one. The definitions of these two metrics can be found in the works (Zheng et al., 2011; Zhang et al., 2015a). Our 
method ASO is compared to the other state-of-the-art methods by using these two metrics for the examples in Figs. 7, 8, 
and 11. The results are recorded in Table 1. As can be seen, the values of MSAE of ASO are smaller than the other five 
compared methods for all the examples. In addition, in the most cases, ASO has the least L2 vertex-based errors (E v,2). 
These quantitative evaluations show that ASO outperforms the other compared methods.

We also record CPU costs for all of the tested methods in Table 1. As we can see, LocalBF is the fastest method, while 
RHM is the slowest one. Our method ASO is faster than �0, but slower than TV and GlobalBF. Due to the dynamic weighting 
scheme is adopted in our method, the computational time of our method is still acceptable.
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Fig. 8. Comparisons of denoising methods on non-CAD meshes (corrupted by Gaussian noise, standard deviation = 0.2 mean edge length). From left to 
right: input noisy meshes, denoising results produced by our method ASO, RHM (Yadav et al., 2018b), TV (Zhang et al., 2015a), �0 (He and Schaefer, 2013), 
LocalBF (Zheng et al., 2011), and GlobalBF (Zheng et al., 2011). The second and fourth rows are zoomed-in views.

Fig. 9. Comparison of denoising methods on the real scanned mesh. From left to right: input noisy mesh, denoising results produced by our method ASO, 
RHM (Yadav et al., 2018b), TV (Zhang et al., 2015a), �0 (He and Schaefer, 2013), LocalBF (Zheng et al., 2011), and GlobalBF (Zheng et al., 2011). The second 
row is the zoomed-in view.

5.4. Limitation

Although the effectiveness of our mesh denoising method has been verified by the above experiments, it also has the 
limitation that it cannot deal with the noisy mesh with extremely irregular sampling; see Fig. 13 for example. However, for 
this case, no methods can be found producing satisfactory results.

6. Conclusion

In this paper, we present a mesh denoising method based on a novel anisotropic second order normal filtering model. The 
proposed normal filtering model can preserve sharp features and simultaneously recover smooth regions as well as prevent 
unnatural effects. We solve the problem by variable splitting and augmented Lagrangian method. Extensive experiments on 
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Fig. 10. Denoising results of scanned meshes captured by Kinect sensors. The first row shows raw scanned meshes, while the second row shows denoising 
results produced by our method ASO.

Fig. 11. Comparison of denoising methods on the irregular sampling mesh (corrupted by Gaussian noise, standard deviation = 0.2 mean edge length). From 
left to right: input noisy mesh, denoising results produced by our method ASO, RHM (Yadav et al., 2018b), TV (Zhang et al., 2015a), �0 (He and Schaefer, 
2013), LocalBF (Zheng et al., 2011), and GlobalBF (Zheng et al., 2011). The top row is the zoomed-in view.

Fig. 12. Denoising results of Cube corrupted by different levels of noise. The first row shows noisy meshes (corrupted by Gaussian noise, standard deviation 
= 0.3, 0.5, 0.7, and 0.9 mean edge length, respectively). The second row shows the corresponding results produced by our method ASO.

a variety of meshes show that our mesh denoising method outperforms the other five state-of-the-art methods both visually 
and quantitatively.

Several problems are left open. First, the anisotropic second order operator can be extended to define over point clouds. 
Second, this second order operator can be used in other geometry processing applications, such as mesh segmentation, 
repairing, and simplification.
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Fig. 13. A failed result produced by our method with extremely irregular sampling. From left to right: clean mesh, wireframe mode of the clean mesh, noisy 
mesh, and result produced by our method ASO.
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