
Computer-Aided Design 126 (2020) 102858

Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Mesh Denoising via a NovelMumford–Shah Framework
Zheng Liu a, Weina Wang b, Saishang Zhong c,∗, Bohong Zeng d, Jinqin Liu d,
Weiming Wang e

a School of Geography and Information Engineering, National Engineering Research Center of Geographic Information System, China University of
Geosciences, Wuhan 430074, China
b Department of Mathematics, Hangzhou Dianzi University, Hangzhou 310018, China
c School of Earth Resources, State Key Laboratory of Geological Processes and Mineral Resources, China University of
Geosciences, Wuhan 430074, China
d School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
e School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China

a r t i c l e i n f o

Article history:
Received 26 March 2020
Accepted 16 April 2020

Keywords:
Mesh denoising
Mumford–Shah functional
Γ -convergence approximation
Feature preserving

a b s t r a c t

In this paper, we introduce a Mumford–Shah framework to restore the face normal field on the
triangulated surface. To effectively discretize Γ -convergence approximation of the Mumford–Shah
model, we first define an edge function space and its associated differential operators. They are
helpful for directly diffusing the discontinuity function over mesh edges instead of computing the
approximated discontinuity function via pointwise diffusion in existing discretizations. Then, by using
the operators in the proposed function space, two Mumford–Shah-based denoising methods are
presented, which can produce denoised results with neat geometric features and locate geometric
discontinuities exactly. Our Mumford–Shah framework overcomes the limitations of existing tech-
niques that blur the discontinuity function, be less able to preserve geometric features, be sensitive
to surface sampling, and require a postprocessing to form feature curves from located discontinuity
vertices. Intensive experimental results on a variety of surfaces show the superiority of our denoising
methods qualitatively and quantitatively.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Mesh denoising is a typical inverse problem in geometry pro-
cessing. By a given noisy input, the main goal of mesh denoising is
to recover a noise-free mesh while preserving essential geometric
features from the underlying surface. With the rapid development
of scanner devices, more and more meshes can be easily acquired
from the real world. Yet, the scanning process inevitably produces
some level of noise due to local measurement errors. These noise
not only degrade the quality of meshes, but also cause errors in
downstream geometry processing applications [1]. Thus, the task
of removing the noise from the corrupted mesh while preserving
geometric features becomes increasingly important, especially in
the case of high noise.

1.1. Related work

Over the last two decades, great efforts have been done on the
mesh denoising problem. Although there are numerous methods
in literature, it is beyond our scope to review all existing methods,

∗ Corresponding author.
E-mail address: cugsaishang@foxmail.com (S. Zhong).

and we only review several notable methods and those are most
relevant to this paper.

Filter-based methods. Early isotropic filtering methods [2,3]
are effective for removing the noise, but they do not consider
underlying geometric features during the filtering process and
often cause significant shape distortion. In order to tackle this
problem, a variety of methods [4–7] based on anisotropic fil-
tering were proposed, most of which can be seen as processes
of shrinking weighted surface area of the mesh. Recently, the
use of normal filtering followed by vertex updating [4,8–16]
has become so widespread that it could arguably substitute for
directly smoothing vertex positions. Although these normal filter-
ing methods can preserve geometric features to some extent, they
still have limitations. For example, bilateral normal filtering [9]
is not well developed for preserving sharp features, especially in
the presence of large noise, though it can effectively recover fine
details and smooth regions. The guided normal filtering proposed
by Zhang et al. [17] preserves sharp features well, but it some-
times lacks the robustness to mesh topology. The normal filtering
method proposed in [13] can stop diffusion at sharp features and
produce smooth transition regions. Nevertheless, due to the using
of the robust error estimator, this method tends to oversmooth
small scale features and fine details.

https://doi.org/10.1016/j.cad.2020.102858
0010-4485/© 2020 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.cad.2020.102858
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cad.2020.102858&domain=pdf
mailto:cugsaishang@foxmail.com
https://doi.org/10.1016/j.cad.2020.102858

2 Z. Liu, W. Wang, S. Zhong et al. / Computer-Aided Design 126 (2020) 102858

Optimization-based methods. Recently, variational methods
have received extensive concern. They formulate the denoising
process as an optimization problem and seek for a desired solu-
tion satisfying the optimization goal. Zheng et al. [9] proposed a
global bilateral weighting normal filtering model. Their method
performs well on non-CAD meshes with fine details, but cannot
do a good job on CAD meshes including sharp features, especially
in the case of high noise. Total variation (TV) normal filtering [10]
and ℓ0 minimization [18,19] achieve impressive results for pre-
serving sharp features but inevitably flatten some weak features
and fine details for their sparsity requirements. In particular,
this drawback is more severe for ℓ0 minimization [18], which
produces false edges in smoothly curved regions. To overcome
these problems, high order methods [15,20] were proposed to
restore the face normal field. Yet, the high order methods tend
to blur sharp features, especially for dealing with large noise.
Some low-rank based methods [21–23] were proposed to recover
pattern similarity patches of the mesh. However, these methods
still seem to have difficulties to effectively handle sharp features.

Data-driven methods. Several data-driven mesh denoising
methods [22,24–26] have been proposed typically. Wang et al.
[25] proposed a method based on the cascades normal regres-
sion, which can remove the noise without assumptions about
geometric features of the underlying surface and noise patterns.
Their method first learns non-linear regression functions map-
ping the filtered face normal descriptors to the face normals of
the ground-truth input, and then applied the learned functions to
compute filtered face normals. Wang et al. [26] and Wei et al. [22]
presented data-driven methods by learning normal variations in
two steps. In the first step, they learn mapping from the noisy
input to its ground-truth counterpart and use neural networks
to remove the noise, which might lost some fine details of the
underlying surface. Then in the second step, they learn to recover
the missing details. Although these data-driven methods perform
well for scanned data, the performance of these methods depends
on the completeness of the training data set.

Mumford–Shah framework. More recently, it has attracted
great interest to study the Mumford–Shah (MS) model in ge-
ometry processing by adapting the idea from image processing.
The MS model was originally proposed in [27], which has been
proved very successful in dealing with image restoring [28–30]
and segmentation [31–33]. Since the classical MS functional is
non-convex, it is challenging to directly minimize it. Thus, nu-
merical schemes to approximate the MS functional have been
widely studied. Using Γ -convergence theory, Ambrosio and Tor-
torelli [34] have approximated the MS functional by two coupled
elliptic functionals. This numerical scheme, called AT approxi-
mation, is one of the most successful approximations of the MS
functional.

Inspired by the success of the AT approximation in image pro-
cessing, it has been extended to 3D data in [14,35,36]. Specifically,
Coeurjolly et al. [36] discretized the AT approximation for dealing
with voxel-based data, while Tong and Tai [35] and Bonneel
et al. [14] discretized it over triangulated surfaces. However, a
fundamental limitation of the existing discretizations [14,35,36]
is that they all compute the discontinuity function of the ap-
proximation based on pointwise diffusion, which tends to make
the discontinuity function mismatch the underlying geometric
features. This mismatch degrades the quality of denoised re-
sults, especially in the case of high noise. Moreover, because
the existing discretizations compute the discontinuity function
on vertices, an extra postprocessing is needed to connect lo-
cated discontinuity vertices to form feature curves. Thus, devel-
oping an effective framework to discretize the MS functional over
triangulated surfaces is still an open problem.

1.2. Contribution

In this paper, we discretize Γ -convergence approximations
of the MS functional in a novel framework. In order to dis-
cretize the approximations, two function spaces are introduced
over the mesh. One is the piecewise constant function space
in which we smooth the face normal field, and the other is
the edge function space in which we diffuse the discontinu-
ity function. These two function spaces are tightly connected
by the differential mapping between them. Compared to the
existing discretizations [14,35,36], the proposed discretizations
calculate the discontinuity function in a completely different
manner, which yields better denoised results and more accurately
located geometric discontinuities. Our main contributions are
three-fold:

• Two coupled function spaces and associated operators are
given out over triangulated surfaces. To the best of our
knowledge, this is the first work to describe the edge func-
tion space and its operators for directly diffusing the func-
tion over mesh edges.

• Two Mumford–Shah-based models are formulated in the
proposed function spaces, which are more able to produce
high quality denoised results with neat features and at the
same time locate discontinuities of the surface accurately.

• Two efficient algorithms based on alternating minimiza-
tion are presented to solve the proposed Mumford–Shah
regularizations, which can be easily implemented.

2. Background of Mumford–Shah functional and its Γ -conver-
gence approximations

For the sake of completeness and readability, we give a brief
review of the Mumford–Shah (MS) regularizing functional and its
Γ -convergence variants. For a scalar image u : Ω → R with its
discontinuity set K ⊂ Ω , the original MS model is to minimize
the following MS functional:

MS(u,K) = γ

∫
Ω\K

|∇u|2 + β

∫
K
dl + α

∫
Ω

(u − f)2, (1)

f denotes an observed image, γ , β , and α are tuning parameters.
The first term of (1) smoothes u except on the discontinuity set
K, the second term minimizes the length of the set K, and the
last term helps the solution to harmonize well with the observed
image f . Due to the coupling of the function u and the length set
K, it is challenging to minimize the MS functional (1).

Using the Γ -convergence theory, Ambrosio and Tortorelli [34]
approximated the MS functional (1) by elliptic functionals. The AT
approximation of (1) is defined as follows

AT(u, v) =

∫
Ω

γ (v2
|∇u|2)+β(ϵ|∇v|

2
+

(v − 1)2

4ϵ
)+α(u− f)2, (2)

where ϵ is a small positive constant. When ϵ → 0, AT(u, v)
converges to MS(u,K). v is an introduced auxiliary variable to
be used instead of the discontinuity set K. More specifically, v is
close to 0 on the discontinuities and 1 otherwise. Thus, the values
of 1 − v range between 0 and 1 and can be interpreted as the
probability for the presence of the discontinuity. The minimizing
of AT approximation (2) is to find an equilibrium between two
competing minimizing processes of u and v.

Shah [37] suggested a modified version of the AT approxima-
tion (2), by replacing the quadratic term |∇u|2 by a total variation
(TV) term |∇u|, defined as

MSTV(u, v) =

∫
Ω

γ (v2
|∇u|)+β(ϵ|∇v|

2
+

(v − 1)2

4ϵ
)+α(u−f)2. (3)

Z. Liu, W. Wang, S. Zhong et al. / Computer-Aided Design 126 (2020) 102858 3

The Γ -convergence of the Mumford–Shah total variation (MSTV)
approximation (3) was proved in [38]. Due to the using of the
TV term, the MSTV approximation has excellent edge-preserving
property. Compared with the AT approximation (2), the MSTV
approximation (3) is more robust against noise and can recover
much clearer edges, but tends to suppress fine details, especially
in the case of high noise [29,39].

For N-channel images u, f : Ω → RN, where u = (u1, u2, . . . ,

uN), the AT (2) and MSTV (3) approximations can be naturally
extended to their vectorial versions as follows:

AT(u, v) =

∫
Ω

γ (v2
∥∇u∥

2)+β(ϵ|∇v|
2
+

(v − 1)2

4ϵ
)+α∥u−f∥2, (4)

MSTV(u, v)=
∫

Ω

γ (v2
∥∇u∥)+β(ϵ|∇v|

2
+
(v − 1)2

4ϵ
)+α∥u−f∥2, (5)

where ∥∇u∥ =

(∑N
i=1 |∇ui|

2
) 1

2
. Note that, in the above two

vectorial approximations, the scalar function v is common for the
N channels.

3. Basic function spaces and operators

To effectively discretize Γ -convergence approximations of the
Mumford–Shah functional, we define some basic function spaces
and associated differential operators in this section.

3.1. Notations

Let M be a compact triangulated surface of arbitrary topology
with no degenerate triangles in R3. The set of vertices, edges,
and triangles of M are denoted as {pi : i = 0, 1, . . . , P − 1},
{ei : i = 0, 1, . . . , E−1}, and {τi : i = 0, 1, . . . , T−1}, respectively.
Here P, E, and T are the numbers of vertices, edges, and triangles
of M, respectively. If p is an endpoint of an edge e, then we write
it as p ≺ e. Similarly, e ≺ τ denotes that e is an edge of a triangle
τ ; p ≺ τ denotes that p is a vertex of a triangle τ .

We further introduce the relative orientation of an edge e to
a triangle τ , which is denoted by sgn(e, τ) as follows. First, we
assume that all triangles are with counterclockwise orientation
and all edges are with randomly chosen fixed orientations. For
an edge e ≺ τ , if the orientation of e is consistent with the
orientation of τ , then sgn(e, τ) = 1; otherwise sgn(e, τ) = −1.

3.2. Function spaces and associated operators

Given a triangulated surface M, we now define two basic
function spaces. The space U = RT is a set, whose elements
are the values at the faces of M, which is also called the piece-
wise constant function space in [10,15,40]. For instance, u =

(u0, u1, . . . , uT−1) ∈ U means that the value of u restricted on
the triangle τ is uτ , which is written as u|τ sometimes. The space
V = RE is a set, whose elements are the values at mesh edges
of M. We also call the space V as the edge function space E
sometimes. Likewise, the component of v ∈ V is ve, which is the
value restricted on the edge e written as v|e sometimes.

We equip the spaces U and V with inner products and norms.
For u1, u2, u ∈ U , we define

(u1, u2)U =

∑
τ

u1
|τu2

|τ sτ , ∥u∥U =

√
(u, u)U , (6)

where sτ is the area of triangle τ . For v1, v2, v ∈ V , we have

(v1, v2)V =

∑
e

v1
|ev

2
|elen(e), ∥v∥V =

√
(v, v)V , (7)

where len(e) is the length of the edge e.

Fig. 1. (a) The illustration of [v]l over the line l plotted in cyan in triangle τ

with the barycenter plotted in red. (b) The illustration of H(e), which is the set
of lines associated with the edge e. The lines contained in H(e) are plotted in
cyan. The illustration of el , which is the edge sharing the common vertex of e
and l. The set of el associated with the lines contained in H(e) refers to four
edges, and the elements contained in the set are plotted in green.

The differential operators ∇M, divM, and ∆M on M are
approximated by using first order finite differences. For u ∈ U ,
the gradient operator ∇M : U → V , is given by

(∇Mu)|e=

⎧⎨⎩
∑
τ ,e≺τ

uτ sgn(e, τ), e ̸⊂ ∂M

0, e ⊂ ∂M
, ∀e. (8)

For v ∈ V , the divergence operator divM : V → U , as the adjoint
operator of −∇M, is expressed as

(divMv)|τ= −
1
sτ

∑
e≺τ ,

e̸⊂∂M

vesgn(e, τ)len(e), ∀τ . (9)

The Laplace operator ∆M : U → U has the following form:

(∆Mu)|τ= −
1
sτ

∑
e≺τ ,τ∩τe=e,

e̸⊂∂M

(uτ − uτe)len(e), ∀τ . (10)

We refer the readers to [10,15,40] for more details about the
above operators.

Then, we will give the definitions of operators ∇E , divE , and
∆E on the edge function space E , which are first proposed to
describe the diffusion of function defined at mesh edges. Again,
these operators are approximated by first order finite differences.

Let l be a line connecting the barycenter and one vertex of the
triangle τ . For v ∈ V , we define the jump of v over a line l as

[v]l = ve+sgn(e+, l) + ve−sgn(e−, l), (11)

where e+ and e− are two edges sharing the common vertex of l.
e+ enters the common vertex in the counterclockwise direction,
whereas e− leaves the vertex in the counterclockwise direction.
Since all of the triangles are with counterclockwise orientation,
we can directly set sgn(e+, l) = 1 and sgn(e−, l) = −1. All
aforementioned descriptions are illustrated in Fig. 1a.

The gradient operator on the edge function space E is naturally
defined as

∇E : V → W , (∇Ev)|l= [v]l, ∀l, for v ∈ V , (12)

where W = R3×T is the range of ∇E . The W space is equipped
with the following inner product and norm:

(w1, w2)W =

∑
l

w1
|lw

2
|llen(l), ∥w∥W =

√
(w, w)W , (13)

for w1, w2, w ∈ W , where len(l) is the length of line l.

4 Z. Liu, W. Wang, S. Zhong et al. / Computer-Aided Design 126 (2020) 102858

The adjoint operator of ∇E , namely divE : W → V , can be
derived by using the above inner products in V and W . For w ∈

W , divEw is given by

(divEw)|e= −
1

len(e)

∑
l∈H(e)

wlsgn(e, l)len(l), ∀e, (14)

where H(e) is the set of lines associated with the edge e; see
Fig. 1b. The readers interested in the mathematical derivation of
divE can find more information in Appendix.

Using the gradient operator (12) and its adjoint operator (14),
the Laplace operator ∆E = divE∇E : V → V , can be derived as:

(∆Ev)|e= −
1

len(e)

∑
l∈H(e)

(
vesgn(e, l) + velsgn(el, l)

)
sgn(e, l)len(l)

= −
1

len(e)

∑
l∈H(e)

(ve − vel)len(l), ∀e, for v ∈ V ,

(15)

where el is the edge sharing the common vertex of e and l,
indicated as the green line in Fig. 1b.

To handle vectorial data, we extend the above concepts to
vectorial cases. Three vectorial spaces U, V, and W are defined
as:

U = U × · · · × U
N

, V = V × · · · × V
N

, W = W × · · · × W
N

,

for N-channel data. The inner products and norms in U, V, and W
are as follows:

(u1,u2)U =

∑
1≤i≤N

(u1
i , u

2
i)U , ∥u∥U =

√
(u,u)U,

(v1, v2)V =

∑
1≤i≤N

(v1
i , v

2
i)V , ∥v∥V =

√
(v, v)V,

(w1,w2)W =

∑
1≤i≤N

(w1
i , w

2
i)W , ∥w∥W =

√
(w,w)W,

for u1,u2,u ∈ U, v1, v2, v ∈ V, and w1,w2,w ∈ W. Thus,
all aforementioned operators in this section can be computed
channel by channel.

4. Mesh denoising using Mumford–Shah regularizations

In this section, we first propose two Mumford–Shah-based
normal filtering by utilizing the operators introduced in Section 3.
The vertex positions are reconstructed according to the filtered
face normals. Then, we discuss the differences between the two
proposed MS-based normal filtering. At last, we compare the
proposed discretization of the AT approximation with the existing
ones.

4.1. AT normal filtering

Given a noisy mesh, we denote its face normals as Nin. Assume
v to be a function to represent the discontinuity of the face
normals N, where ve ≈ 1 in the homogeneous regions of N and
ve ≈ 0 on the jump set. To remove noise in Nin through vectorial
AT approximation (4) with unit normal constraints, we propose
the following variational model

min
N∈CN,v∈V

{
AT(N, v) = γ ∥v(∇MN)∥2

V

+ β(ϵ ∥∇Ev∥
2
W +

∥v − 1∥2
V

4ϵ
) + α

N − Nin
2
U

}
,

(16)

where CN = {N ∈ R3×T
: ∥Nτ∥ = 1, ∀τ }. Although in theory ϵ →

0, in practice we fix it by 0.001. The minimization problem (16)
can be split into two subproblems with respect to the variables
N and v. Thus, the AT normal filtering model (16) is solved by
alternatively minimizing the following two subproblems:

• The N-subproblem: for fixed v

min
N∈CN

γ ∥v(∇MN)∥2
V + α

N − Nin
2
U ; (17)

• The v-subproblem: for fixed N

min
v∈V

γ ∥v(∇MN)∥2
V + β(ϵ ∥∇Ev∥

2
W +

∥v−1∥2
V

4ϵ
). (18)

The N-subproblem (17) is a quadratic minimization with the
unit normal constraints. Here we adopt an approximate strategy
to solve the problem. We first ignore the unit normal constraints
and solve a quadratic programming and then project the min-
imizer onto a unit sphere. The Euler–Lagrange equation of the
problem (17) (without the unit normal constraints) is given as

αN − γ

(
divM(v2

∇MN)
)

= αNin. (19)

Eq. (19) can be reformulated into a sparse and positive linear sys-
tem, which is able to be solved using various numerical packages
such as Eigen, Taucs, and Math Kernal Library (MKL).

The v-subproblem (18) is also a quadratic minimization. The
Euler–Lagrange equation of it is

(2γ ∥∇MN∥
2
+

β

2ϵ
)v − 2βϵ(∆Ev) =

β

2ϵ
, (20)

which also can be reformulated into a sparse linear system.
The alternating minimization procedure for solving (16) is

sketched in Algorithm 1. The iteration procedure terminates
when one of the stopping criteria is satisfied.

Algorithm 1: Solving AT normal filtering model (16)

Initialization: N−1
= 0, v−1

= 0, k = 0, ε = 1e − 6;
repeat

Solve N-subproblem
For fixed vk−1, compute Nk from (19) ;
Normalize Nk;

Solve v-sub problem
For fixed Nk, compute vk from (20) ;

until ∥Nk
− Nk−1

∥U < ϵ or k ≥ 30;
return Nk.

4.2. MSTV normal filtering

The normal filtering model based on the vectorial MSTV ap-
proximation (5) is proposed, as follows:

min
N∈CN,v∈V

{
MSTV(N, v) = γ

∑
e

v2
e ∥(∇MN)|e∥ len(e)

+ β(ϵ ∥∇Ev∥
2
W +

∥v − 1∥2
V

4ϵ
) + α

N − Nin
2
U

}
.

(21)

Due to the nondifferentiability and nonlinearity of the MSTV
normal filtering model (21), it is challenging to directly solve the
problem. Recently, variable splitting and augmented Lagrangian
method (ALM) has achieved great successes in ℓ1 related prob-
lems [10,15,41]. Here, we introduce an auxiliary variable and
employ ALM to solve the minimization problem (21).

Z. Liu, W. Wang, S. Zhong et al. / Computer-Aided Design 126 (2020) 102858 5

Fig. 2. Denoising results of joint corrupted by different levels of noise. The first
row shows noisy meshes (corrupted with σ = 0.2, 0.3, 0.4, and 0.5le , where
σ is standard deviation of Gaussian noise and le is mean edge length). The
second row shows the corresponding results produced by AT, and the third row
illustrates results generated by MSTV.

We first introduce a new variable p ∈ V and reformulate the
problem (21) as

min
N∈CN,v∈V ,p∈V

{
γ

∑
e

v2
e ∥pe∥ len(e)

+ β(ϵ ∥∇Ev∥
2
W +

∥v − 1∥2
V

4ϵ
) + α

N − Nin
2
U

}
s.t. p = ∇MN.

(22)

To solve (22), we define the augmented Lagrangian function

L(N, v, p; λp)=γ
∑
e

v2
e ∥pe∥ len(e)+β(ϵ ∥∇Ev∥

2
W +

∥v−1∥2
V

4ϵ
)

+α
N − Nin

2
U+(λp, p−∇MN)V+

rp
2

∥p−∇MN∥
2
V ,

(23)

where λp is a Lagrange multiplier and rp is a positive penalty co-
efficient. The primal variables update procedure can be separated
into three sub problems:

• The N-subproblem: for fixed p

min
N∈CN

α∥N − Nin
∥
2
U +

rp
2

∥∇MN − (p +
λp

rp
)∥2

V; (24)

• The p-subproblem: for fixed N and v

min
p∈V

γ
∑
e

v2
e ∥pe∥ len(e) +

rp
2

∥p − (∇MN −
λp

rp
)∥2

V; (25)

• The v-subproblem: for fixed p

min
v∈V

γ
∑
e

v2
e ∥pe∥ len(e)+β(ϵ ∥∇Ev∥

2
W +

∥v−1∥2
V

4ϵ
). (26)

The N-subproblem (24) can be solved by the same approxi-
mate strategy for solving (17). The Euler–Lagrange equation of
(24) is given as follows

rp(∆MN) − 2αN = divM(rpp + λp) − 2αNin. (27)

This equation can be reformulated into a sparse linear system,
which can be solved by various numerical packages. Then, we
directly project the solution onto the unit sphere.

The p-subproblem (25) is easy to solve because it can be spa-
tially decomposed, where the minimization problem with respect
to each edge is performed individually. Thus, for each edge e, we
only need to solve the following problem

min
pe

γ v2
e ∥pe∥ +

rp
2

∥pe −
(
(∇MN)|e−

λpe

rp

)
∥
2,

which has a closed form solution

pe =

⎧⎨⎩(1 −
γ v2e

rp∥Ψe∥
)Ψe, ∥Ψe∥ >

γ v2e
rp

,

0, ∥Ψe∥ ≤
γ v2e
rp

,
(28)

where Ψ = ∇MN −
λp
rp
.

The v-subproblem (26) is also a quadratic programming. The
Euler–Lagrange equation of it can be written as

(2γ ∥p∥ +
β

2ϵ
)v − 2βϵ(∆Ev) =

β

2ϵ
. (29)

Similarly, Eq. (29) can be reformulated into a sparse linear system,
which can be solved directly.

The entire procedure for solving (21) is outlined in
Algorithm 2. The algorithm iteratively and alternatively solves the
above three subproblems and updates the Lagrange multiplier.

Algorithm 2: Solving MSTV normal filtering model (21)
Initialization:
λ0
p = 0,N−1

= 0, p−1
= 0, v−1

= 0, k = 0, ε = 1e − 6;
repeat

Solve N-sub problem
For fixed (λk

p, pk−1), compute Nk from (27) ;
Normalize Nk;

Solve p-sub problem
For fixed (λk

p,Nk, vk−1), compute pk from (28) ;
Solve v-sub problem

For fixed pk, compute vk from (29) ;
Update Lagrange multiplier

λk+1
p = λk

p + rp(pk
− (∇MN)k) ;

until ∥Nk
− Nk−1

∥U < ε or k ≥ 30;
return Nk.

4.3. Vertex updating scheme

After restoring the face normal field by the proposed normal
filtering, vertex positions should be reconstructed to match the
filtered face normals. As mentioned in previous works [13,16],
the traditional vertex updating scheme proposed by Sun et al. [8]
has the trianglewise orientation ambiguity problem. To address
this problem, we reconstruct the denoised mesh using the vertex
updating scheme proposed by Zhang et al. [16], which can pre-
vent orientation ambiguity. The iteration number is empirically
fixed as 30 in our experiments for producing well results. Since
the vertex updating scheme is not our main contribution, we refer
interested readers to the work [16] for further information.

4.4. AT versus MSTV normal filtering

It is necessary to discuss differences between AT (16) and
MSTV (21) normal filtering, abbreviated as AT and MSTV.

Fig. 2 shows a comparison of these two methods against
different levels of noise. As can be seen, when the noise level is
moderate, both AT and MSTV can effectively remove noise and
simultaneously preserve sharp features; see the first column of
Fig. 2. Since MSTV uses ℓ1 norm for its sparsity requirement, it
tends to produce staircase effects over smoothly curved regions

6 Z. Liu, W. Wang, S. Zhong et al. / Computer-Aided Design 126 (2020) 102858

Fig. 3. Results yielded by discretizations in [35] and [14], and the proposed discretization. The first column shows Fandisk corrupted with σ = 0.1le and σ = 0.2le .
From left to right: input noisy surfaces, denoising (feature extraction) results produced by discretizations in [35] and [14] and the proposed discretization, and the
corresponding discontinuity functions produced by these three discretizations.

Fig. 4. Results yielded by discretization in [14] and the proposed discretization
for irregular sampling mesh (corrupted with σ = 0.2le). From left to right:
input noisy surface, denoising results produced by discretization in [14] and
the proposed discretization, the corresponding discontinuity functions, and the
corresponding feature extraction results.

in all the noise levels. In contrast, AT generates better results in
smooth regions. However, when the noise level increases, MSTV
produces better results than those of AT; see the second and
third columns of Fig. 2. In the case of high noise, MSTV still can
effectively remove noise and preserve sharp features, whereas AT
cannot; see the last column of Fig. 2.

In summary, MSTV is more robust against the noise and can
produce cleaner sharp features, but enforces the denoised results
toward the piecewise constant limit due to its ℓ1 constraint on
the gradient information. Although AT favors piecewise smooth
solutions and gives desired results in the case of moderate noise,
it blurs sharp features in some extent and leaves some bumps on
the surface when the noise level is high. More examples about
the discussion of AT and MSTV can be found in Section 5.

4.5. Comparisons to previous discretizations

To further illustrate the efficiency of our discretization, we
compare it with those proposed by Tong and Tai [35] and Bonneel
et al. [14]. To make the paper self-contained, we give a brief
review of the discretizations in [35] and [14].

Tong and Tai [35] discretized the AT approximation via linear
finite element method (FEM). Their discretization computes the
normal field and discontinuity function vertex by vertex, which
is suitable to deal with vertex-based problems. However, vertex
normals are averaged from face normals and thus vertex nor-
mal filtering is less effective for mesh denoising. Moreover, the

calculation of the discretization in [35] is complex and time-
consuming, because trigonometric functions exist in calculation.
Last but not least, an extra postprocessing is needed to connect
located discontinuity vertices to form feature curves, which is not
an easy task; see the feature curve extraction part in [35].

The discretization in [14] defined the signal on mesh faces, and
defined the discontinuity function on mesh vertices. To simulta-
neously regularize them, Bonneel et al. [14] adopt a smoothing
strategy for the discontinuity function (averaging the disconti-
nuity values on two adjacent vertices, and assigning the average
value onto the edge connecting these two vertices). On one hand,
there is not a tight connecting between their regularizing pro-
cesses of the signal and the discontinuity function. On the other
hand, their smoothing strategy tends to blur the discontinuity
function inevitably. Again, a postprocessing is needed to form
feature curves.

In contrast, we discretize the AT approximation via two tightly
coupled function spaces: one is the piecewise constant function
space, in which the face normal field is smoothed; the other is
the edge function space, in which the calculation of the discon-
tinuity function is surprisingly simple yet effective. We list the
advantages of our discretization as follows:

1. Our discretization calculates the discontinuity function at
mesh edges directly. It can produce better denoised results,
and make located discontinuity edges more exactly dis-
tribute on geometric features of the underlying surface. See
Fig. 3 for example. Besides, our discretization can directly
extract feature curves from located discontinuity edges,
whereas the discretizations in [35] and [14] cannot.

2. Our discretization has simpler formulation and higher effi-
ciency in practice. Compared with the discretization in [35]
based on linear FEM and that in [14] based on DEC, our dis-
cretization is simple in calculating by using the operators in
the proposed function spaces. As can be seen in Fig. 3, the
CPU costs of our discretization are dramatically decreased,
compared to those of the discretizations in [35] and [14].

3. Our discretization is robust against non-uniform surface
sampling. The proposed operators used in our discretiza-
tion are strictly-defined by finite element representation
in numerical PDE. In contrast, the discretization in [14] is
calculated irrespective of geometric measure of the under-
lying surface that makes it sensitive to surface sampling.
As we can see in Fig. 4, our discretization outperforms that
in [14], especially in irregular sampling regions.

Z. Liu, W. Wang, S. Zhong et al. / Computer-Aided Design 126 (2020) 102858 7

Fig. 5. Denoising results and the corresponding discontinuity functions for
different β . From left to right: noisy mesh (corrupted with σ = 0.1le) and results
with different β . The top row shows noisy mesh and denoising results, while
the bottom row illustrates the corresponding discontinuity map v.

Fig. 6. Denoising results for different γ . From left to right: noisy mesh (corru-
pted with σ = 0.1le) and results with different γ .

5. Experimental results and comparisons

We evaluate our mesh denoising methods on a variety of sur-
faces including CAD, non-CAD, and real scanned meshes captured
by the laser scanner and Kinect sensors. The tested meshes are
corrupted by either synthetic or raw noise. The synthetic noise
is added in random directions, and is generated by a zero-mean
Gaussian function with standard deviation (σ) proportional to the
mean edge length (le). The mesh sizes of the tested surfaces in
this section are listed in Table 1. We compare our mesh denoising
methods, abbreviated as AT and MSTV, with the state-of-the-art
methods including TV normal filtering [10], ℓ0 minimization [18],
robust and high fidelity mesh denoising [13], and bilateral normal
filtering [9], abbreviated as TV, ℓ0, RHM, and BF, respectively. We
have implemented all the methods tested in the paper (except
Yadav et al. [13]) by using C++. All the examples are run on a PC

with an Intel i7 dual core 2.6 GHz processor and 8 GB RAM; all the
meshes are rendered in a flat-shading model for showing faceting
effect.

5.1. Parameters tuning

As we know, most mesh denoising methods have parameters,
which need to be manually tuned. Both our AT (16) and MSTV
(21) normal filtering models have three parameters: α, β , and γ .
These parameters have different roles, and need to be tuned to
generate satisfactory results. Because the parameter influences on
these two models are similar, we just discuss the parameters of
AT normal filtering.

α is introduced to prevent the solution deviating far from
the input. For producing satisfactory results, α is suggested with
smaller values for CAD meshes and with greater values for non-
CAD and scanned meshes. When tuning parameters, we first set
α in a suggested range with lower values for higher level of noise,
and then tune the other two parameters.

β controls the penalization of total length of located discon-
tinuity edges. Fig. 5 shows results with different β . As we can
see, with the increasing of β , the length of discontinuity edges is
decreasing. As mentioned before, the processes of denoising and
locating discontinuities are complementary. Thus, the decreas-
ing of the length of discontinuity edges will influence denoising
results (blurring sharp features); see Figs. 5c and 5d for example.

γ influences the smoothness of the denoised result, which
increases with the noise level. If γ is too small, noise cannot be
effectively removed; see Fig. 6b. On the contrary, too large γ will
flatten smooth regions and generate false edges; see Fig. 6d.

5.2. Qualitative comparisons

We visually compare our methods AT and MSTV with the
state-of-the-art methods including TV, ℓ0, BF, and RHM, respec-
tively. The parameters in all the tested methods are elaborately
tuned for generating visually best results.

Denoise CAD surfaces. In Fig. 7, we demonstrate and compare
results for a CAD mesh containing sharp features and smoothly
curved regions. The mesh is corrupted by moderate noise. It can
be seen that, except BF, all the other methods can recover sharp
features at this noise level. TV, ℓ0, and MSTV preserve sharp fea-
tures well, but suffer from unnatural staircase effects in smoothly
curved regions; see Figs. 7b, 7c, and 7g. This annoying visual
artifact is more serious for ℓ0 for its high sparsity requirement. As
we can see, ℓ0 even produces some false edges in smooth regions.
In contrast, both RHM and our method AT preserve sharp features
and simultaneously recover smooth regions well. However, due

Fig. 7. Denoising results of Casting, corrupted with σ = 0.15le . From left to right: noisy mesh, denoising results produced by TV [10], ℓ0 [18], BF [9], RHM [13], and
our methods AT and MSTV, respectively. The top and bottom rows are zoomed-in views.

8 Z. Liu, W. Wang, S. Zhong et al. / Computer-Aided Design 126 (2020) 102858

Table 1
Mesh sizes of surfaces tested in Section 5.
Model Casting Fandisk Vase Dodecahedron Prism Bunny-iH Gargoyle Angel Embossment Pyramid Big-Girl Block Child

|V | 18.4 K 6.5 K 3.8 K 4.6 K 4.5 K 35.2 K 25.0 K 24.6 K 66.0 K 35.3 K 46.1 K 8.7 K 49.3 K
|F | 36.9 K 12.9 K 7.7 K 9.1 K 9.1 K 70.5 K 50.0 K 48.1 K 129.1 K 69.6 K 91.1 K 17.5 K 98.6 K

Fig. 8. Denoising results of Fandisk, corrupted with σ = 0.5le . From left to right: noisy mesh, denoising results produced by TV [10], ℓ0 [18], BF [9], RHM [13], and
our methods AT and MSTV, respectively. The second row shows zoomed-in views.

Fig. 9. Denoising results of Vase, corrupted with σ = 0.6le . From left to right: noisy mesh, denoising results produced by TV [10], ℓ0 [18], BF [9], RHM [13], and
our methods AT and MSTV, respectively. The second row shows zoomed-in views.

Fig. 10. Denoising results of Dodecahedron and Prism, corrupted with σ = 0.5le and σ = 0.3le . From left to right: noisy meshes, denoising results produced by
TV [10], ℓ0 [18], BF [9], RHM [13], and our methods AT and MSTV, respectively.

to the using of robust error norm, RHM oversmoothes small-scale
features and sharpens some curved features; see the zoomed-in
view of Fig. 7e. Thus, in the case of moderate noise, AT outper-
forms the other methods in dealing with the surface containing
sharp features and curved surface characteristics.

Fig. 8 shows comparisons of a CAD mesh corrupted by con-
siderable amount of noise. We note that, although MSTV induces
slight staircase effects, it is superior in recovering geometric
features with respect to the compared methods. Moreover, both
AT and MSTV produce clearer feature-preserving results over
those of the state-of-the-art methods. Compared to TV, MSTV
reduces the staircase effects appeared in smooth regions, and is
more robust for preserving features; see the artifacts of the result
produced by TV in Fig. 8b. ℓ0 preserves sharp features well, but

flattens smooth regions and induces false edges inevitably. Al-
though RHM does a good job on smooth regions, it oversmoothes
the weak feature of Fandisk; see Fig. 8e. Thus, when the noise
level is increasing, our method AT and MSTV can yield promising
feature-preserving results.

Denoise piecewise smooth and constant surfaces. Fig. 9
shows that AT outperforms the other methods evidently for the
surface with piecewise smooth priors. In contrast, TV, ℓ0, and
MSTV surfer from the staircase effects in varying degrees, espe-
cially for ℓ0. We also note that, compared to TV, our method MSTV
has less staircase effects in smooth regions, and produces more
faithful feature-preserving result; see Figs. 9b and 9g.

In Fig. 10, we show results for meshes containing only flat
regions and sharp features. As can be seen, TV, RHM, and AT

Z. Liu, W. Wang, S. Zhong et al. / Computer-Aided Design 126 (2020) 102858 9

Fig. 11. Denoising results of Bunny-iH and Gargoyle, corrupted with σ = 0.3le . From left to right: noisy meshes, denoising results produced by TV [10], ℓ0 [18],
BF [9], RHM [13], and our methods AT and MSTV, respectively. The even rows are zoomed-in views.

Fig. 12. Denoising results of real scanned meshes acquired by laser scanners. From left to right: noisy meshes, denoising results produced by TV [10], ℓ0 [18], BF [9],
RHM [13], and our methods AT and MSTV, respectively. The even rows are zoomed-in views.

produce wavy edges more or less, especially for RHM. Although ℓ0
preserves sharp features well, it tends to introduce spurious edges
over the surface; see the second row of Fig. 10c. In contrast, our
method MSTV leads to results be more faithful to the underlying
surface with piecewise constant priors.

Denoise non-CAD surfaces. Fig. 11 gives comparisons on non-
CAD meshes with different levels of features. As can be seen,
all the methods can remove the noise effectively. Nevertheless,
TV, ℓ0, and MSTV flatten some details at small scales, and ℓ0
makes this situation even worse; see the zoomed-in views of
Figs. 11b, 11c, and 11g. RHM oversmoothes small-scale features
evidently and tends to enhance smoothly curved features; see
the head region of Gargoyle in Fig. 11e. In contrast, BF and our
method AT perform better than the other methods. Thanks to
the discontinuity function v of our method, AT can preserve

geometric features at various sizes, while BF may lose some finer
details; see the eye region of Gargoyle in Figs. 11d and 11f.

Denoise scanning surfaces. Fig. 12 shows denoising results
for the real scanning data acquired by laser scanners. Similar re-
sults can be observed as those of the non-CAD meshes. Although
all the tested methods can remove noise and recover geometric
features to some extent, our methods AT and MSTV preserve fine
details better than the other methods; see the zoomed-in views of
Fig. 12. Again, although MSTV preserves geometric features well,
it suffers a little staircase effects. We also testify effectiveness of
our methods on scanning data acquired by Kinect sensors. These
scanned meshes have been provided by Wang et al. [25]. As we
can see in Fig. 13, except BF and RHM which leave some bumps
in the results, all the other methods can remove the noise. ℓ0
may sharpen curved features and flatten some smooth regions;

10 Z. Liu, W. Wang, S. Zhong et al. / Computer-Aided Design 126 (2020) 102858

Fig. 13. Denoising results of Pyramid and Big-Girl captured by Kinect sensors. From left to right: noisy meshes, denoising results produced by TV [10], ℓ0 [18], BF [9],
RHM [13], and our methods AT and MSTV, respectively.

Table 2
Quantitative comparisons for the tested denoising methods including TV [10], ℓ0 [18], BF [9], RHM [13], and our methods AT and MSTV.
Methods MASE (×10−3) , Ev,2(×10−3); Time (in Seconds)

Casting Fandisk Vase Dodecahedron Prism Bunny-iH Gargoyle Pyramid Big-Girl

TV 8.37,1.51; 1.48 19.3,3.90; 0.43 27.5,6.20; 0.26 15.6,4.62; 0.29 1.63,3.04; 0.29 21.6,1.78; 3.10 37.3,2.68; 2.29 63.9,14.5; 1.78 44.7,5.67; 1.79
ℓ0 15.6,2.51; 15.9 46.1,5.54; 26.0 49.1,14.7; 13.3 10.5,2.34; 46.1 1.06,2.42; 8.48 55.9,2.83; 39.9 48.1,3.69; 31.2 63.4,11.7; 38.8 44.1,5.85; 57.0
BF 11.1,1.29; 0.75 58.0,8.78; 0.20 34.9,9.06; 0.10 49.4,5.76; 0.14 23.7,5.56; 0.11 18.6,1.62; 1.51 21.9,2.20; 0.83 58.4,15.4; 1.02 47.9,5.80; 1.46
RHM 13.8,1.45; 12.6 21.3,3.79; 3.70 20.3,5.69; 2.14 16.6,8.32; 2.83 10.5,7.21; 5.33 34.3,2.12; 23.4 45.8,2.54; 21.6 54.8,13.4; 18.7 49.7,5.91; 25.1
AT 5.53,0.99; 2.32 16.7,3.27; 0.91 14.5,5.89; 0.63 12.6,3.64; 0.71 1.61,5.31; 0.60 17.1,1.21; 6.31 18.3,1.71; 4.67 58.2,15.7; 7.64 42.1,5.65; 8.12
MSTV 8.07,1.50; 2.75 15.6,2.74; 1.09 18.6,5.62; 0.71 9.26,2.06; 0.80 0.84,2.13; 0.74 20.5,1.65; 7.14 33.2,2.21; 5.63 54.1,16.3; 9.23 41.5,5.58; 11.0

see Fig. 13c. AT, MSTV, and TV can produce appealing results.
However, from numerical metrics (which will be introduced in
Section 5.3), we find that numerical errors of MSTV are always
lower than those of TV and AT. This shows that MSTV preserves
features better than TV and AT for scanning data.

The above qualitative comparisons show that, our methods
AT and MSTV produce better denoised results and recover more
faithful geometric features, especially in the case of high noise.

5.3. Quantitative comparisons

In order to show more objective comparisons, we further
assess the performances of the tested methods quantitatively.
Specifically, we use MSAE to measure the mean square angular
error between face normals of the denoised result and those of
the corresponding clean surface, and use Ev,2 to measure the
vertex deviation of the denoised result from the underlying clean
surface. These two error metrics are widely suggested in previ-
ous works [9,10,13,15,20]. The evaluation results on these two
metrics are listed in Table 2.

As shown in Table 2, both AT and MSTV consistently outper-
form the compared methods in terms of MSAE values. Specifically,
for CAD meshes, AT outperforms the other ones when the noise
level is moderate, whereas MSTV achieves the lowest MSAE value
in the case of high noise. AT performs well on the surface with
piecewise smooth priors, while MSTV does a good job on that
with piecewise constant priors. AT produces the lowest MSAE
values for non-CAD meshes with fine details, while MSTV per-
forms favorably against the other methods for scanning data.
Moreover, in most cases, one of our methods has least errors
in the sense of Ev,2. This fact shows that the results produced
by our methods are more faithful to the underlying surfaces,
compared to those produced by the state-of-the-art methods.
Accordingly, the quantitative evaluations are consistent with the
visual comparisons, which show the superiority of our methods
AT and MSTV.

Table 3
Quantitative comparisons for the methods including non-local based method
[21], learning-based method [25], and our methods AT and MSTV.
Meshes MASE (×10−3) , Ev,2(×10−3); Time (in Seconds)

Non-local Learning AT MSTV

Block 123, 5.83; 8.16 81.9, 1.82; 0.94 5.39,1.73; 1.11 6.78, 2.14; 1.28
Child 51.6,0.82; 20.4 64.1, 1.08.; 3.74 22.8, 0.85; 7.06 25.0, 0.88; 8.13

The CPU costs of all the tested methods are also recorded in
Table 2. As can be seen, BF is the fastest method, while ℓ0 is the
slowest one. Although RHM is some faster than ℓ0, it is still more
computationally intensive than the other methods. Our methods
are a little slower than BF and TV, but much faster than ℓ0 and
RHM. MSTV is more computationally intensive than AT, because
MSTV needs to solve the ℓ1 related problem. As a result, in most
cases, our methods produce better denoising results at reasonable
CPU costs.

5.4. Comparisons to non-local and learning-based methods

To further demonstrate the robustness and effectiveness of
our Mumford–Shah framework, we compare our methods AT and
MSTV with the non-local based method [21] and the learning-
based method [25] visually and quantitatively. As we can see
in Fig. 14, for the CAD mesh, the non-local based method over-
smoothes sharp features, and the learning-based method induces
slight artifacts in sharp features. In contrast, our methods AT
and MSTV preserve sharp features well. For the non-CAD mesh
with different levels of features, the non-local based method and
AT produce visually better results. The learning-based method
smoothes weak features, and MSTV flattens some smooth fea-
tures. As can be seen in Table 3, for both CAD and non-CAD
meshes, our methods outperform the compared two methods in
terms of MSAE values. The non-local based method has the lowest
Ev,2 value for the non-CAD mesh. We also record the CPU costs of

Z. Liu, W. Wang, S. Zhong et al. / Computer-Aided Design 126 (2020) 102858 11

Fig. 14. Denoising results of Block and Child, corrupted with σ = 0.3le and σ = 0.2le . From left to right: noisy meshes, denoising results produced by non-local
based method [21], learning-based method [25], and our methods AT and MSTV, respectively.

these four methods in Table 3. As we can see, the non-local based
method is the slowest method, while the learning-based method
is the fastest one.

6. Conclusion

In this paper, we introduce Mumford–Shah-based regulariza-
tion models for mesh denoising. A novel numerical method is
proposed to discretize MS-based functionals over triangulated
surfaces. The new discretizations directly diffuse the discontinu-
ity function on mesh edges and thus avoid the postprocessing
to form feature curves. Compared to existing discretizations, the
proposed discretizations have simpler formulation, and are more
robust for preserving and locating geometric features especially
in the high noise case. Intensive experimental results on a variety
of surfaces show the robustness and effectiveness of our mesh
denoising methods.

Some future works are left open. The proposed MS framework
can be extended to more applications over triangulated surfaces,
such as feature detection, segmentation, completion, etc. More-
over, it would be interesting and challenging to extend this work
on point clouds.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

The authors would like to thank anonymous reviewers for
their constructive suggestions for improving the manuscript.
Zheng Liu’s research is supported by National Natural Science
Foundation of China (No. 61702467). Weina Wang’s research
is supported by Zhejiang Provincial Natural Science Foundation
of China (No. LQ20A010007). Weiming Wang’s research is sup-
ported by National Natural Science Foundation of China (Nos.
61702079, 61976040).

Appendix

Lemma 1. The adjoint operator of divE : W → V , w ↦→ divEw

has the following form:

(divEw)|e= −
1

len(e)

∑
l∈H(e)

wlsgn(e, l)len(l), ∀e.

Proof. As the definition of the adjoint operator, we have

⟨∇Ev, w⟩W = ⟨v, −divEw⟩V . (30)

By using the inner products (13) and (7) in W and V , (30) can be
reformulated as∑

l

(∇Ev)|lwllen(l) =

∑
e

ve(−divEw)|elen(e). (31)

By using the definition of the gradient operator (12), the left-hand
side of (31) is actually∑

l

(∇Ev)|lwllen(l) =

∑
l

[v]lwllen(l)

=

∑
l

(vesgn(e, l))wllen(l)

=

∑
e

ve

∑
l∈H(e)

sgn(e, l)wllen(l)

Therefore, we have∑
e

ve

∑
l∈H(e)

sgn(e, l)wllen(l) =

∑
e

ve(−divEw)|elen(e).

Then, the assertion follows immediately. □

References

[1] Wang J, Zhang X, Yu Z. A cascaded approach for feature-preserving surface
mesh denoising. Comput-Aided Des 2012;44(7):597–610.

[2] Taubin G. A signal processing approach to fair surface design. In: Proc.
22nd Annu. Conf. Comput. Graph. Interactive Tech. 1995, p. 351–58.

[3] Desbrun M, Meyer M, Schröder P, Barr A-H. Implicit fairing of irregular
meshes using diffusion and curvature flow. In: Proc. 26th Annu. Conf.
Comput. Graph. Interactive Tech. 1999, p. 317–24.

http://refhub.elsevier.com/S0010-4485(20)30051-8/sb1
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb1
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb1

12 Z. Liu, W. Wang, S. Zhong et al. / Computer-Aided Design 126 (2020) 102858

[4] Yagou H, Ohtake Y, Belyaev A. Mesh smoothing via mean and median
filtering applied to face normals. In: Proc. Geometric Modeling Process.
2002, p. 124–31.

[5] Tasdizen T, Whitaker R, Burchard P, Osher S. Geometric surface smoothing
via anisotropic diffusion of normals. In: Proc. Conf. visualization. 2002, p.
125–32.

[6] Bajaj C, Xu G. Anisotropic diffusion of surfaces and functions on surfaces.
ACM Trans Graph 2003;22(1):4–32.

[7] Wang C. Bilateral recovering of sharp edges on feature-insensitive sampled
meshes. IEEE Trans Vis Comput Graphics 2006;12(4):629–39.

[8] Sun X, Rosin P, Martin R, Langbein F. Fast and effective feature-preserving
mesh denoising. IEEE Trans Vis Comput Graphics 2007;13(5):925–38.

[9] Zheng Y, Fu H, Au KC, Tai CL. Bilateral normal filtering for mesh denoising.
IEEE Trans Vis Comput Graphics 2011;17(10):1521–30.

[10] Zhang H, Wu C, Zhang J, Deng J. Variational mesh denoising using total
variation and piecewise constant function space. IEEE Trans Vis Comput
Graphics 2015;21(7):873–86.

[11] Lu X, Chen W, Schaefer S. Robust mesh denoising via vertex pre-
filtering and L1-median normal filtering. Comput Aided Geom Design
2019;114:133–42.

[12] Wei M, Liang L, Pang WM, Wang J, Li W, Wu H. Tensor voting guided
mesh denoising. IEEE Trans Autom Sci Eng 2017;14(2):931–45.

[13] Yadav S, Reitebuch U, Polthier K. Robust and high fidelity mesh denoising.
IEEE Trans Vis Comput Graphics 2019;25(6):2304–10.

[14] Bonneel N, Coeurjolly D, Gueth P, Lachaud J-O. Mumford-Shah mesh
processing using the Ambrosio-Tortorelli functional. Comput Graph Forum
(Proc Pac Graph) 2018;37(7):75–85.

[15] Liu Z, Lai R, Zhang H, Wu C. Triangulated surface denoising using
high order regularization with dynamic weights. SIAM J Sci Comput
2019;41(1):1–26.

[16] Zhang J, Deng B, Hong Y, Peng Y, Qin W, Liu L. Static/dynamic filtering for
mesh geometry. IEEE Trans Vis Comput Graphics 2019;25(4):1774–87.

[17] Zhang W, Deng B, Zhang J, Bouaziz S, Liu L. Guided mesh normal filtering.
Comput Graph Forum (Proc Pac Graph) 2015;34(7):23–34.

[18] He L, Schaefer S. Mesh denoising via L0 minimization. ACM Trans Graph
2013;32(4):1–8.

[19] Zhao Y, Qin H, Zeng X, Xu J, Dong J. Robust and effective mesh denoising
using L0 sparse regularization. Comput-Aided Des 2018;101:82–97.

[20] Liu Z, Zhong S, Xie Z, Wang W. A novel anisotropic second order
regularization for mesh denoising. Comput Aided Geom Des (Proc Geom
Model Process) 2019;71:190–201.

[21] Li X, Zhu L, Fu C-W, Heng P-A. Non-local low-rank normal fil-
tering for mesh denoising. Comput Graph Forum (Proc Pac Graph)
2018;37(7):155–66.

[22] Wei M, Guo X, Huang J, Wang F, Xie H, Kwan R, Qin J. Mesh defiltering via
cascaded geometry recovery. Comput Graph Forum 2019;38(7):591–605.

[23] Chen H, Huang J, Remil O, Xie H, Qin J, Guo Y, Wei M, Wang J.
Structure-guided shape-preserving mesh texture smoothing via joint
low-rank matrix recovery. Comput-Aided Des (Proc Solid Phys Model)
2019;115:122–34.

[24] Diebel JR, Thrun S, Brünig M. A Bayesian method for probable surface
reconstruction and decimation. ACM Trans Graph 2006;25(1):39–59.

[25] Wang P-S, Liu Y, Tong X. Mesh denoising via Cascaded normal regression.
ACM Trans Graph 2016;35(6):232:1–232:12.

[26] Wang J, Huang J, Wang FL, Wei M, Xie H, Qin J. Data-driven geometry-
recovering mesh denoising. Comput-Aided Des (Proc Solid Phys Model)
2019;114:133–42.

[27] Mumford D, Shah J. Optimal approximations by piecewise smooth func-
tions and associated variational problems. Comm. Pure and Applied Math.
1989;42(5):577–684.

[28] Brook A, Kimmel R, Sochen N. Variational restoration and edge detection
for color images. J Math Imaging Vision 2003;18(3):247–68.

[29] Bar L, Brook A, Sochen N, Kiryati N. Deblurring of color images corrupted
by impulsive noise. IEEE Trans Image Process 2007;16(4):1101–11.

[30] Jung M, Bresson X, Chan TF, Vese LA. Nonlocal Mumford-Shah regularizers
for color image restoration. IEEE Trans Image Process 2011;20(6):1583–98.

[31] Chambolle A. Image segmentation by variational methods: Mumford and
Shah functional and the discrete approximations. SIAM J Appl Math
1995;55(3):827–63.

[32] Vese LA, Chan TF. A multiphase level set framework for image seg-
mentation using the Mumford and Shah model. Int J Comput Vis
2002;50(3):271–93.

[33] Chan TF, Esedoglu S, Nikolova M. Algorithms for finding global mini-
mizers of image segmentation and denoising models. SIAM J Appl Math
2006;66(5):1632–48.

[34] Ambrosio L, Tortorelli VM. Approximation of functional depending on
jumps by elliptic functional via Γ -convergence. Comm Pure Appl Math
1990;43(8):999–1036.

[35] Tong W, Tai XC. A variational approach for detecting feature lines on
meshes. J Comput Math 2016;34(1):87–112.

[36] Coeurjolly D, Foare M, Gueth P, Lachaud J-O. Piecewise smooth reconstruc-
tion of normal vector field on digital data. Comput Graph Forum (Proc Pac
Graph) 2016;35(7):157–67.

[37] Shah J. A common framework for curve evolution, segmentation and
anisotropic diffusion. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
1996, p. 136–42.

[38] Alicandro R, Braides A, Shah J. Free-discontinuity problems via functionals
involving the L1-norm of the gradient and their approximations. Interfaces
Free Bound 1999;1(1):17–37.

[39] Rami B-A, Nir S. Stereo matching with Mumford-Shah regulariza-
tion and occlusion handling. IEEE Trans Pattern Anal Mach Intell
2010;32(11):2071–84.

[40] Liu Z, Zhang H, Wu C. On geodesic curvature flow with level set
formulation over triangulated surfaces. J Sci Comput 2017;70(2):631–61.

[41] Wu C, Tai XC. Augmented lagrangian method, dual methods, and split
bregman iteration for ROF, vectorial TV, and high order models. SIAM J
Imaging Sci 2010;3(3):300–39.

http://refhub.elsevier.com/S0010-4485(20)30051-8/sb6
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb6
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb6
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb7
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb7
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb7
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb8
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb8
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb8
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb9
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb9
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb9
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb10
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb10
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb10
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb10
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb10
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb11
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb11
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb11
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb11
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb11
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb12
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb12
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb12
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb13
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb13
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb13
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb14
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb14
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb14
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb14
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb14
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb15
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb15
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb15
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb15
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb15
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb16
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb16
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb16
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb17
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb17
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb17
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb18
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb18
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb18
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb19
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb19
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb19
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb20
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb20
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb20
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb20
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb20
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb21
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb21
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb21
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb21
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb21
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb22
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb22
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb22
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb23
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb23
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb23
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb23
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb23
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb23
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb23
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb24
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb24
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb24
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb25
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb25
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb25
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb26
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb26
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb26
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb26
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb26
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb27
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb27
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb27
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb27
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb27
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb28
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb28
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb28
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb29
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb29
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb29
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb30
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb30
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb30
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb31
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb31
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb31
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb31
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb31
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb32
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb32
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb32
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb32
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb32
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb33
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb33
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb33
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb33
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb33
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb34
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb34
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb34
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb34
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb34
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb35
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb35
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb35
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb36
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb36
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb36
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb36
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb36
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb38
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb38
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb38
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb38
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb38
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb39
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb39
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb39
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb39
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb39
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb40
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb40
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb40
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb41
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb41
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb41
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb41
http://refhub.elsevier.com/S0010-4485(20)30051-8/sb41

	Mesh Denoising via a Novel Mumford–Shah Framework
	Introduction
	Related work
	Contribution

	Background of Mumford–Shah functional and its -conver-gence approximations
	Basic function spaces and operators
	Notations
	Function spaces and associated operators

	Mesh denoising using Mumford–Shah regularizations
	AT normal filtering
	MSTV normal filtering
	Vertex updating scheme
	AT versus MSTV normal filtering
	Comparisons to previous discretizations

	Experimental results and comparisons
	Parameters tuning
	Qualitative comparisons
	Quantitative comparisons
	Comparisons to non-local and learning-based methods

	Conclusion
	Declaration of competing interest
	Acknowledgments
	Appendix
	References

