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a b s t r a c t

Point cloud denoising has been an attractive problem in geometry processing. The main challenge is to
eliminate noise while preserving different levels of features and preventing unnatural effects (such as
over-sharpened artifacts on smoothly curved faces and cross artifacts on sharp edges). In this paper,
we propose a novel feature-preserving framework to achieve these goals. Firstly, we newly define
some discrete operators on point clouds, which can be used to construct a second order regularization
for restoring a point normal field. Then, based on the filtered normals, we perform a feature detection
step by a bi-tensor voting scheme. As will be seen, it is robust against noise and can locate underlying
geometric features accurately. Finally, we reposition points with a multi-normal strategy by using a
simple yet effective RANSAC-based algorithm. Intensive experimental results show that the proposed
method performs favorably compared to other state-of-the-art approaches.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Point cloud data has attracted considerable attention due to
the rapid development of scanning devices (e.g., Microsoft Kinect,
Xtion Pro, Google Project Tango, and Intel RealSense). However,
even with high-fidelity devices, the corruption of scanned data
is usually inevitable from the degradation during its acquisition.
Thus, recovering high quality point clouds from the noisy inputs
is a typical inverse problem in geometry processing. The main
challenge is to distinguish sharp features and noise as they are
of high frequency information, and at the same time prevent
unnatural effects during the denoising process.

Over the years, state-of-the-art methods have been proposed
for recovering noise-free point clouds. In [1], Öztireli et al. pro-
posed a method combining moving least square and local kernel
regression to preserve geometric features. However, when the
noise level increases, it is unlikely to perform well with satisfac-
tory results. Especially, this limitation is more severe for point
clouds containing sharp features. By using robust principal com-
ponent analysis, [2] exploits sparse characteristics of subspaces
to preserve sharp features, which is also robust against outliers.

∗ Corresponding author.
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Unfortunately, [2] usually over-sharpens curved features because
it depends on sparse and low-rank modeling. In [3], Huang et al.
developed an edge-aware upsampling technique to recover the
point cloud with well-preserved sharp features. Nevertheless, it
sometimes flattens fine details, since it chooses large neighbor-
hood size to pull points away from sharp features for upsampling.
Moreover, this method may be sensitive to high density noise,
because of its unfaithful upsampling around sharp features with-
out explicitly estimating the point normal field. Sun et al. [4]
extended ℓ0 minimization to point clouds for preserving sharp
features. Although their method achieves impressive results for
data with piecewise constant priors, it tends to flatten smoothly
curved regions and produce pseudo edges in these regions due to
its high requirement of sparsity.

As we have seen, the aforementioned state-of-the-art methods
are either less able to preserve sharp features well, or may pro-
duce unnatural artifacts in denoised results. To overcome these
limitations, we propose a novel feature-preserving framework to
recover point normals as well as positions. It consists of three
cascaded stages: normal filtering; feature detection; and multi-
normal point updating, as illustrated in Fig. 1. In the first stage,
we present an anisotropic second order variational method to
restore the normal field from the noisy input; see Figs. 1(a) and
1(b). Based on the filtered normals, we define normal and point
voting tensors, and then introduce a bi-tensor voting scheme to
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Fig. 1. An overview of the proposed point cloud denoising method. From left to right: noisy input, normal filtering result produced by second order regularization,
detected feature points produced by bi-tensor voting scheme, estimated multiple normals at feature points, the final reconstruction result produced by multi-normal
point updating.

detect features; see Fig. 1(c). The scheme utilizes the best prop-
erties of the normal and point tensor voting and overcomes the
weakness of both. In the following multi-normal point updating
stage, we estimate the multiple normals per feature point using
a RANSAC-based algorithm; see Fig. 1(d). Then, we update point
positions according to the restored normals (the normals at non-
feature points are produced by our second order normal filtering,
and those at feature points are estimated by the RANSAC-based
algorithm); see Fig. 1(e). The main contributions of the paper are
summarized as follows:

• An anisotropic second order regularization method is pre-
sented to restore the point normal field. It is able to preserve
sharp features well and simultaneously prevent unnatural
effects in denoised results.
• A bi-tensor voting scheme, which combines the normal and

point tensor voting, is proposed to detect features on the
noisy input. The combined technique is not only robust
against noise but also can accurately locate features.
• A simple yet effective RANSAC-based algorithm is intro-

duced to estimate the multiple normals at each feature
point. It can significantly reduce cross artifacts during the
point reconstruction process.

2. Related work

Point cloud denoising is a fundamental problem in digital
geometry processing, which has been studied extensively. It is
beyond our scope to review numerous existing methods, and
we only review noticeable ones closely related to this work.
Generally, we classify point cloud denoising methods into four
main categories as following.

MLS-based methods. Moving least squares (MLS) has been
originally designed for surface reconstruction by Alexa et al. [5].
Later, many extensions and modifications [6–9] were proposed.
As we know, the MLS-based methods iteratively project the in-
put points onto the approximated underlying surface. However,
these methods assume the underlying surface with piecewise
smooth priors, which lead to blur geometric features inevitably.
To overcome this limitation, Öztireli et al. [1] proposed a method
combining moving least squares and local kernel regression to
project points in a feature-preserving manner. However, their
method is less able to preserve sharp features well.

LOP-based methods. Locally optimal projection (LOP) aims
at producing a set of points to describe the underlying sur-
face while enforcing a uniform distribution over the input point
set. The LOP operator consisting of a data and repulsion term
was first presented by Lipman et al. [10]. Huang et al. [11]
proposed a weighted LOP (WLOP), which can produce a more
uniformly distributed sampling by modifying the repulsion term

with local density. Later, Huang et al. [3] reformulated WLOP
with the anisotropic weight to preserve sharp features in an
edge-aware upsampling methodology. Soon after, Wu et al. [12]
applied a deep point representation to consolidate the point cloud
containing large holes and missing regions. Prenier et al. [13]
reformulated the data term to be a continuous representation
of the point set to speed up the LOP process. Lu et al. [14]
proposed a projection method based on Gaussian Mixture Model,
called GPF, to automatically preserve features of the underly-
ing surface. Although the LOP-based methods yield uniformly
distributed sampling results, they usually cannot produce satis-
factory denoised results when the noise increases. Especially, this
drawback is more severe for surfaces containing sharp features.

Sparse and low-rank methods. Recently, variational methods
have received widespread attention. These methods formulate
the denoising process as an optimization problem and seek for
a desired solution satisfying the optimization goal. As points be-
longing to the same region will have similar normals, a pioneering
work proposed by Avron et al. [15] employed ℓ1 regularization to
restore the point normal field. Sun et al. [4] extended the ℓ0 min-
imization to deal with the underlying surface with the piecewise
constant prior. The ℓ1 [15] and ℓ0 [4] based regularization meth-
ods use the sparsity of first order information to remove noise.
Both of them preserve sharp features well, but suffer from the
undesired staircase effects in smoothly curved regions, especially
for ℓ0 minimization because of its high sparsity requirement. Mat-
tei and Castrodad [2] used low-rank characteristics of subspaces
to preserve sharp features and deal with outliers. Nevertheless,
their method, which depends on sparse and low-rank modeling,
tends to over-sharpen smoothly curved features. Digne et al. [16]
proposed a pliable framework to analyze shapes, by consolidating
Local Probing Fields (LPFs) defined in the ambient space around
the whole shape. In [17], Chen et al. devised a low-rank matrix
recovery model with a graph constraint to preserve various ge-
ometric features. However, due to the multi-patch collaborative
mechanism, their method seems to be computationally intensive.

Data-driven methods. More recently, several data-driven
works [18,19] based on deep learning have attracted our at-
tention. In [18], Boulch and Marlet used Hough transform and
voting to create the image structure for deep learning without
changing in the CNN framework. Roveri et al. [19] designed
CNNs, called PointProNets, with a fully differentiable architecture.
After converting unordered points to regularly sampled height
maps, their method uses PointProNets for point set consolida-
tion to preserve various geometric features and details. These
learning-based methods can effectively remove noise and pre-
serve geometric features. Yet, they are highly dependent on the
completeness of the training data set.
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Fig. 2. (a) The illustration of constructing auxiliary geometric elements for
the ith point pi . The blue points are K-nearest neighborhoods (KNNs) of pi ,
the red points are midpoints between two consecutive KNNs, the auxiliary
edges connecting pi and its KNNs are plotted in black, and the auxiliary lines
connecting pi and the midpoints are plotted in red. Assume counterclockwise
winding order for all geometric elements. (b) the illustration of second order
variation over the line l plotted in red. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this
article.)

3. Normal filtering via second order regularization

The noisy point cloud P can be considered as a set of unor-
ganized points {pi}Mi=1 sampled from a 2-dimensional manifold in
R3, where M is the number of sampled points. For the ith point
of P , its index set of K-nearest neighborhood (KNN) is denoted as
N (i), which consists of K elements. We further arrange KNNs of
the point in a counterclockwise order using local PCA.

3.1. Definitions of discrete operators on point cloud

To define discrete operators on P , we introduce auxiliary
geometric elements to construct local connectivity information
for each point. Assume E = {E(i)}Mi=1 = {e = (pi, pj) : j ∈ N (i)}
is the set of edges connecting points and their KNNs. For the ith
point, the edges of E(i) are indicated as black lines in Fig. 2(a). Let
L = {L(i)}Mi=1 = {l = (pi,mk)} be the set of lines connecting points
and midpoints of their two consistent KNNs. For the ith point, the
lines of {L(i)} are indicated as red dash lines in Fig. 2(a).

By constructing the auxiliary edges and lines point by point,
we can define discrete operators on P . We denote the vector
space V = RM , which is isomorphic to the discrete function space
over P . For any scalar function u ∈ V , the first order difference
operator is defined as

D1
: V → V × · · · × V  

K

, u ↦→ D1u,

with

(D1u)|e= ui − uj, ∀e,

where e = (pi, pj) and j ∈ N (i).
Then, we introduce the isotropic second order operator based

on the above first order operator. Given u ∈ V , we define

D2
: V → V × · · · × V  

K

, u ↦→ D2u,

with

(D2u)|l= (D1u)|e+−(D1u)|e−
= (ui − uj+)− (uj− − ui)
= 2ui − uj+ − uj− ∀l.

For the ith point, we denote the two edges sharing the common
point of l as e− = (pi, pj−) and e+ = (pj+, pi), where pj− and
pj+ are two consecutive neighborhoods of pi in counterclockwise
order. The aforementioned descriptions are shown in Fig. 2(b).

As we know, compared to the isotropic second order operator,
the anisotropic second one should have better feature-preserving
property [20,21]. Then, we define the second order operator in an
anisotropic manner as

D2
: V → V × · · · × V  

K

, u ↦→ D2u, (1)

with

(D2u)|l= we+(D1u)|e+−we−(D1u)|e−
= we+(ui − uj+)− we−(uj− − ui)
= (we+ + we−)ui − we+uj+ − we−uj− ∀l,

where we is a nonnegative weight function defined on edges.
Furthermore, we extend the above concepts to handle vecto-

rial data. In particular, for a N-channel vectorial field

u = u× · · · × u  
N

∈ RM×N ,

the proposed operators can be calculated channel by channel.

3.2. Second order normal filtering

Given a noisy point cloud P , we use the local PCA normal
estimation to acquire the initial normals n. To remove noise in
n, we propose the following anisotropic second order normal
filtering model

min
n∈C

{∑
l∈L

len(l)∥(D2n)|l∥ +
α

2

∑
i

disk(pi) ∥ni − n̄i∥
2
}
, (2)

where C = {ni : ∥ni∥ = 1} and α is a tuning parameter
which is empirically set in the range of [1000, 6000]. len(l) is
the length of line l, and disk(pi) is the area of the circle whose
center is pi and radius is the average length of edges contained in
E(i). Here, the edge weight we used in computing the anisotropic
second order operator is defined as an exponential function we =

exp(−( 1−ni·nj
1−cos(θ ) )

2), where ni and nj are normals of two adjacent
points of edge e, and θ is the angle parameter in the range of
[30◦, 60◦].

Because of the nondifferentiability and nonlinear constraints
of the problem (2), it is challenging to directly solve it. The
studies in [22–24] show that variable-splitting and augmented
Lagrangian method (ALM) have achieved great success in solving
ℓ1 related problems. Here, we first introduce an auxiliary variable
X and reformulate the problem (2) as

min
n,X

{∑
l

len(l)∥Xl∥ +
α

2

∑
i

disk(pi)∥ni − ni∥
2
+ ψ(n)

}
s.t. X = D2n,

(3)

where

ψ(n) =
{

0, n ∈ C,
+∞, n /∈ C.

The augmented Lagrangian of (3) reads

L(n, X; λ)=
∑

l

len(l)∥Xl∥ +
α

2

∑
i

disk(pi)∥ni − ni∥
2
+ ψ(n)

+

∑
l

len(l)
(
λl · (Xl−(D2n)|l)

)
+

r
2

∑
l

len(l)∥Xl−(D2n)|l∥2,
(4)
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where λ = {λl} is the Lagrange multiplier and r is a positive
penalty coefficient. The primal variables update procedure can be
separated into two subproblems.

(1) n-subproblem: the sub-minimization problem of n can be
written as

min
n

α

2

∑
i

disk(pi)∥ni−ni∥
2

+
r
2

∑
l

len(l)∥(D2n)|l−(Xl+
λl

r
)∥2+ψ(n),

(5)

which is a quadratic optimization with the unit normal con-
straints. Here we adopt an approximate strategy to solve this
problem. Specifically, we first ignore ψ(n) and solve a quadratic
programming and then project the minimizer onto a unit sphere.
Here, we use fixed-point iteration to approximately solve the
quadratic optimization problem.

(2) X-subproblem: the sub-minimization problem of X is given
as

min
X

∑
l

len(l)∥Xl∥ +
r
2

∑
l

len(l)∥Xl − ((D2n)|l−
λl

r
)∥2 (6)

This problem is easy to solve because the energy function (6) can
be spatially decomposed, where the minimization problem with
respect to each l is performed individually. Thus, for each Xl, we
only need to solve the following problem

min
Xl
∥Xl∥ +

r
2
∥Xl − ((D2n)|l−

λl

r
)∥2,

which has a closed form solution as

Xl = shrink(r, (D2n)|l−
λl

r
), (7)

where shrink(v,w) = max(0, 1− 1
v∥w∥

)w.
The entire procedure for solving the variational model (2) is

outlined in Algorithm 1. Based on variable-splitting and ALM,
this algorithm iteratively solves the above two subproblems and
updates the Lagrange multiplier.
Algorithm 1: ALM for solving second order normal filtering
model (2)

Initialization: n−1 = 0, X−1 = 0, λ0 = 0, k = 0, ε = 1e− 6;
repeat

Solve n-subproblem
For fixed (λk, Xk−1), compute nk from (5) ;
Normalize nk;

Solve X-subproblem
For fixed (λk,nk), compute Xk from (7) ;

Update Lagrange multiplier
λk+1 = λk + r(Xk

− (D2n)k) ;
until

∑
i
disk(pi)

nk
i − nk−1

i

2
< ε or k ≥ 150;

return nk.

4. Feature detection by bi-tensor voting

The tensor voting is a fundamental tool in geometry pro-
cessing for accurately detecting features on high-quality meshes
[25,26]. Recently, it was extended to point clouds by analyzing the
normal voting tensor [27,28] or the point voting tensor [29,30].
However, performing direct the normal or point tensor voting on
noisy point clouds usually produces spurious effects. Specifically,
the point tensor voting is sensitive to the noise, which tends
to produce pseudo features in smooth transition regions; see
Fig. 3(a). Although the normal tensor voting is less sensitive to the

Fig. 3. Feature detection results produced by the (a) point tensor voting, (b)
normal tensor voting, and (c) our bi-tensor voting scheme.

noise, it is prone to detect redundant points around underlying
geometric features; see Fig. 3(b). In this paper, we propose a bi-
tensor voting scheme combining the normal and point tensor
voting to detect features on point clouds. The proposed scheme is
robust against noise, while has advantages in locating underlying
geometric features accurately; see Fig. 3(c).

4.1. Construction of normal and point voting tensors

With the filtered normals from the previous filtering stage, we
construct the normal and point voting tensors simultaneously for
the following voting analysis. The normal voting tensor for the ith
point is calculated as the sum of weighted covariance matrices
from normals of its KNNs

Tni =
1∑

j∈N (i) wn(pi, pj)

∑
j∈N (i)

wn(pi, pj)(nj ⊗ nj), (8)

where wn(pi, pj) = exp(−∥pi − pj∥2/2σ 2
p ) is a Gaussian weight

function decreasing in terms of the distance between pi and pj.
The standard deviation σp is empirically fixed as the average
distance between points. The symbol⊗ denotes the outer product
njnT

j . Similarly, the point voting tensor is constructed as the sum
of weighted covariance matrices from its KNNs

Tpi =
1∑

j∈N (i) wp(ni,nj)

∑
j∈N (i)

wp(ni,nj)
(
(pj − p̄)⊗ (pj − p̄)

)
, (9)

where wp(ni,nj) = exp(−∥ni − nj∥
2/2σ 2

n ) is a Gaussian weight
function decreasing in terms of the variation of two neighboring
normals and p̄ = 1

K

∑
j∈N (i) pj. σn is a user specified parameter.

As the above two tensors are symmetric and positive semide-
fine, they can be diagonalized by eigenvalues and represented
in terms of their spectral components. Specifically, the normal
voting tensor (8) can be written as

Tni =
3∑

m=1

λni,me
n
i,m ⊗ eni,m, (10)

where λni,m and eni,m are the corresponding eigenvalues and eigen-
vectors. Assume the eigenvalues are sorted in decreasing order
λni,1 ≥ λ

n
i,2 ≥ λ

n
i,3 ≥ 0. Similarly, the point voting tensor (9) can

be denoted in terms of its spectral components

Tpi =
3∑

m=1

λ
p
i,me

p
i,m ⊗ epi,m, (11)

where λpi,m and epi,m are the corresponding eigenvalues and eigen-
vectors with λpi,1 ≥ λ

p
i,2 ≥ λ

p
i,3 ≥ 0.
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Fig. 4. Eigenvalues of (a) the normal voting tensor and (b) the point voting
tensor for different points. Point p1 lies at the corner, p2 and p3 lie on two
faces, p4 lies on the sharp edge.

4.2. Bi-tensor voting analysis

In this section, a bi-tensor voting scheme is proposed, which
combines the advantages of the normal and point tensor voting.
To determine whether a point is a feature or not, we propose a
new measure Rf . For the ith point, this measure is defined as

Rf ,i = Rn
f ,i · R

p
f ,i =

λni,2∑3
m=1 λ

n
i,m

·
λ
p
i,3∑3

m=1 λ
p
i,m

. (12)

The reasons to define this measure are as follows. Rn
f ,i of the

point pi on the face is smaller than that on the edge or at the
corner. Similar phenomenon of Rp

f ,i also can be observed. The
multiplication of Rn

f ,i and Rp
f ,i makes Rf ,i of the feature point (point

at the corner or on the edge) is significantly larger than that of
the non-feature point (point on the face). The values of Rf in a
concrete example are illustrated in Table 1. As can be seen, Rf of
p1, p2, and p5 (feature points lie at the corner and on the edges)
are obviously larger than a given threshold. Therefore, we can
easily classify feature points as

Pf = {pi ∈ P | Rf ,i > ϵf }, (13)

where ϵf is a feature threshold.
In order to further identify corners, we propose a measure Rc

at point pi as

Rc,i = Rn
c,i · R

p
c,i =

λni,3∑3
m=1 λ

n
i,m

·
λ
p
i,3

λ
p
i,1 − λ

p
i,2
. (14)

Rn
c,i of pi on the corner is larger than that on the edge or on the

face. Similar phenomenon can be observed as the value of Rp
c,i.

Again, the multiplication of Rn
c,i and Rp

c,i makes the change in value
of Rc,i be more significant. Actually, if the point pi lies on the
corner, Rc,i should be larger than a given threshold; otherwise,
it may lie on the face or edge; see the values of Rc in Table 1 for
example. Thus, we can identify the set of features on corners as

Pc = {pi ∈ P | Rc,i > ϵc}, (15)

where ϵc is a corner threshold. When there are more than one
candidate corners identified in a local neighborhood region, the
one with the largest value of Rc is chosen. Consequently, we can
use the aforementioned rules (13) and (15) to detect almost all
the features and identify the corner points.

To further illustrate the efficiency of the proposed bi-tensor
voting scheme, we compare it with the feature detection scheme
proposed by Zhang et al. [29]. As we can see in Fig. 5, the method
in [29] produces some pseudo features on the smooth regions,
and has a few redundant features around the underlying sharp
edges. In contrast, the proposed bi-tensor voting scheme gives
more satisfying results. It greatly reduces the pseudo features

Table 1
Values of Rf and Rc for points on Fandisk shown in Fig. 4.

Rn
f Rp

f Rf Rn
c Rp

c Rc

p1 0.30216 0.09809 0.02963 0.27903 1.01553 0.2834
p2 0.00351 0.00095 3.35× e−6 0 0.03626 0
p3 0.00388 0.00191 7.44× e−6 0 0.0701 0
p4 0.41027 0.08547 0.035 0.0001 0.26418 2.64× e−5

Fig. 5. Feature detection results of two noisy point clouds corrupted by Gaussian
noise with standard deviation of 60% and 20% of the average distance between
points respectively. From left to right: detected features produced by the
method [29] and ours.

in smooth regions, and at the same time locates the detected
features more accurately. The example in Fig. 5 demonstrates
that the proposed feature detection scheme is more robust to the
perturbation of noise than the method in [29].

Remark. Both thresholds ϵf and ϵc are sensitive to noise. In our
experiments, we empirically set ϵf in the range of [0.01, 0.05],
and set ϵc in the range of [0.07, 0.2].

5. Multi-normal point updating

After obtaining filtered point normals, it is necessary to repo-
sition points to match the filtered normals. Because the single
normals at feature points are ambiguous and undefinable, it is
necessary to adopt multi-normal point updating strategy as pro-
posed in previous works [30–32]. This technique can overcome
cross artifacts at sharp features and preserve sharp features better
than the conventional single normal based approaches, especially
when the point cloud is corrupted with high level of noise [30].
Hence, we similarly employ the multi-normal technique to design
our point updating method consisting of two stages. At the first
stage, we propose a RANSAC-based approach to estimate multiple
normals at each feature point. Then, we reposition points in a
multi-normal manner. Details of both are elaborated as follows.

5.1. RANSAC-based multi-normal estimation

With the filtered single point normals, we propose a simple
yet effective multi-normal estimation based on RANSAC algo-
rithm. The proposed algorithm repeats a voting process enough
times to find a good solution with high probability.
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Algorithm 2: RANSAC-based multi-normal estimation for a
feature point pi.

Initialization: P = N̂ (i), j = 0,m = 0, S = 0, Smax = 0;
repeat

m = 0;
Smax = 0;
repeat

(1) X ← SelectThreeCoplanarPoints(P);
S = area(X);
if S ≥ Smax then

Smax = S;
(2) A← BuildPlane(X);

end
until m < 20;
(3) Yi,j ← GroupPointsBelongToPlane(P , A);
(4) ni,j ← GenerateNormalVector(Yi,j);
(5) P ← ExcludePointsYFromP(P, Yi,j);

until size(P) ≤ 4 or j > 6;

Fig. 6. An example for demonstrating our RANSAC-based multi-normal
estimation algorithm.

For the ith point, our algorithm estimates multiple normals
of it using non-feature points in its KNNs denoted as N̂ (i). Since
N̂ (i) may contain points on several different surface patches, we
partition N̂ (i) into di groups {Yi,j}

di
j=1 and estimate the correspond-

ing multiple normals {ni,j}
di
j=1, where di represents the number

of normals estimated for point pi. By the way, we have di = 1
for all the non-feature points. We use an example in Fig. 6 to
demonstrate our algorithm, where edge points, the corner point,
and non-feature points are colored in red, green, and yellow
respectively. To estimate multiple normals at corner point pi, we
iteratively perform the following steps

(1) Selecting three coplanar non-feature points as a set X . We
randomly select three non-feature points with similar nor-
mals (the angles between these normals are smaller than
15◦). In practice, we pick one non-feature point at random,
and select the other two non-feature points together to
form a triangle as large as possible. As shown in Fig. 6, the
selected points are colored in purple.

(2) Building the plane A from X (using the average point and
normal of X). Approximately, the plane A can be regarded
as an underlying surface nearing the feature point pi.

(3) Grouping points belonging to the plane A. We first project all
the neighbors in N̂ (i) to the plane. If the projection distance
of a point is less than half of average distance between
points, we consider the point belonging to the plane. Here,
we use Yi,j to denote the points belonging to the plane A.

(4) Generating normal vector ni,j. We directly generate a normal
vector by averaging all the normals at the set Yi,j.

Fig. 7. Multi-normal estimation results at feature points. From left to right:
results produced by (a) method in [30] and (b) our RANSAC-based algorithm.

(5) Excluding points Yi,j from non-feature points N̂ (i). If the
number of the left points is large than 4, the iteration
process goes to the step (1); otherwise, the above process
is terminated and returns the estimated multiple normals
at pi.

The overall procedure is outlined in Algorithm 2. By iteratively
running the above steps for each feature point, we can estimate
multiple normals at each feature point.

In general, the multiple normals at each edge point should
include two normal vectors, while those at corner point should
have at least three normal vectors. However, when estimating
the multiple normals at edge point nearing corner point, the
proposed algorithm may produce redundant normal vectors. To
address this problem, we further introduce a simple score metric
for each normal vector, which is designed as:

score(ni,j) = min
p∈Yi,j
∥pi − p∥2. (16)

This score can be used to measure the accuracy of the normal
vector. Generally, the smaller the score is, the more accurate the
corresponding normal vector is. Thus, if the number of normal
vectors of an edge point is larger than 3, we only select the normal
vectors with two smallest scores as the multiple normals of the
edge point.

5.2. Comparisons and examples of multi-normal estimation

To evaluate our multi-normal estimation, we compare it with
the latest one proposed by Zhang et al. [30]. We employ the error
metric RMSMτ (Root Mean Square measure with threshold) de-
signed in [30] to estimate the angular error between the multiple
normals of the ground truth and those of the estimated result.
The ground-truth data used in the paper are point clouds with
multiple normals at each point, which are provided by Zhang
et al. [30]. Based on the error metric and ground-truth data, we
perform the following comparisons. The visual comparisons are
shown in Fig. 7, and the corresponding quantitative comparisons
are listed in Table 2. As we can see, RMSMτ errors of our method
are close to those of the method [30]. However, our method is
much faster than the compared one. To further demonstrate the
validity of our multi-normal estimation, we perform it on a series
of point clouds with different shapes; see Fig. 8. It is clear to see
that, our multi-normal estimation scheme can accurately produce
multiple normals at almost each feature point for the tested point
clouds.
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Fig. 8. Multi-normal estimation results of our RANSAC-based algorithm for
different point clouds.

Table 2
Quantitative Comparisons of multi-normal esti-
mation results shown in Fig. 7.

RMSMτ Time (in s)

Method [30] Ours

Cylinder 0.42 347 0.42 82
Fandisk 10.7 265 10.5 39

Table 3
Quantitative comparisons of denoising results produced by methods RIMLS,
MRPCA, EAR, ℓ0 , and ours.

Dmean × 10−3, Amean × 10−2

RIMLS MRPCA EAR ℓ0 Ours

Block 5.48, 13.7 5.35, 8.25 8.69, 8.54 5.61, 8.18 5.06, 7.21
Dodecahedron 8.50, 8.83 7.40, 2.12 8.90, 5.19 6.41, 0.73 6.37, 0.78
Bunny-iH 3.47, 5.90 3.65, 6.35 3.36, 5.97 3.98, 6.34 2.86, 5.80
Armadillo 1.45, 9.61 1.33, 10.9 1.40, 11.0 1.35, 9.97 1.30, 9.25
Boy 7.75, 13.5 8.44, 15.8 7.98, 13.2 8.04, 14.4 7.63, 13.1
Nicolos 5.82, 7.05 6.42, 8.20 5.98, 7.21 6.07, 7.51 5.66, 6.88

5.3. Point positions updating

With the filtered normals at non-feature points and the es-
timated multiple normals at feature points, we need to update
point positions to match these normals. According to the multi-
normal strategy [30,31], we reposition points by solving the fol-
lowing minimization problem:

min
P

M∑
i=1

1
di

di∑
r=1

∑
j∈N (i)

dk∑
s=1

w(i, r, j, s)
dkWij

[nj,s · (pi − pj)]2, (17)

where the weight w(i, r, j, s) = wp(ni,r , nj,s)wn(pi, pr ), and Wij =∑
j∈N (i)

∑dk
s=1

w(i,r,j,s)
dk

is a normalization factor. The definitions
of wp(ni,r , nj,s) and wn(pi, pr ) can be found in Eqs. (9) and (8)
respectively. By using gradient descent to solve the minimization
problem (17), we update the point positions by the following
iterative formula

pm+1i = pmi +
1
di

di∑
r=1

∑
j∈N (i)

dk∑
s=1

w(i, r, j, s)
dkWij

[nj,s · (pmi − pmj )]nj,s. (18)

More details can refer to the work [31].

6. Experimental results and comparisons

To testify the performance of our point cloud denoising
method, we perform it on both synthetic and real data. The tested
point clouds are contaminated by either synthetic or raw scanned

noise. The synthetic noise is generated by a zero-mean Gaussian
function with standard deviation proportional to the diagonal
of the axis-aligned bounding box of the ground truth. We also
provide visual and quantitative comparisons of our method to
the state-of-the-art ones including RIMLS [1], MRPCA [2], EAR [3]
and ℓ0 [4]. For the method EAR, we perform the code provided by
its authors; for the other three methods, we have implemented
them according to their published articles by using C++. All of
the examples are run on a laptop with a Intel i7 core 2.6 GHz
processor and 8GB RAM.

6.1. Experimental setup

To objectively evaluate the performances of the tested meth-
ods, we utilize the following configuration items. Specifically,
we first apply PCA estimation to produce the same initial nor-
mals for all the tested methods, and then use the bilateral filter
in [3] to restore the same normal field for MRPCA and EAR.
Similarly to [14,17], we sometimes upsample the results of the
tested methods, and reconstruct the upsampled results via RIMLS
(provided by Meshlab for feature-preserving reconstruction), for
enhancing visual effects. Besides, back-face culling is also adopted
for visual rendering. We carefully tune the parameters of each
tested method to yield satisfactory results.

6.2. Qualitative comparisons and examples

Fig. 9 demonstrates comparisons of a point cloud containing
both sharp features and smoothly curved regions. As we can see,
all of the tested methods are able to remove noise. Furthermore,
RIMLS recovers smooth regions well but over-smoothes sharp
features seriously. MRPCA and EAR not only blur sharp features to
some extent, but also generate staircase effects in smooth transi-
tion regions, see Figs. 9(c) and 9(d). Although MRPCA preserves
sharp features better than EAR, it may cause shape shrinkage
and distortion. Due to the sparse property of ℓ0 norm and ℓ1
norm, both ℓ0 and our method preserve sharp features well, see
Figs. 9(e) and 9(f). However, due to its high sparsity requirement,
ℓ0 flattens some smooth regions and produces false edges in
these regions. In contrast, our method can preserve sharp features
and simultaneously recover smooth transition regions well. As
a result, visual comparisons in Fig. 9 show that our method is
noticeably better than the other compared methods in terms of
recovering sharp features and smooth regions.

Fig. 10 shows results on a point cloud containing only flat
regions and sharp features. As we can see, ℓ0 and our method can
effectively remove noise while preserving sharp features well, see
Figs. 10(e) and 10(f). In contrast, MRPCA and EAR do a good job
on flat regions, but they blur sharp features in varying degrees;
see Figs. 10(c) and 10(d). Again, RIMLS smoothes sharp features
evidently for removing noise; see Fig. 10(b). This example shows
the effectiveness of our method for dealing with the point cloud
with piecewise constant priors.

Fig. 11 gives comparisons on a point cloud with rich details.
As we can see, ℓ0 flattens some details and smooth regions.
EAR and MPRCA sharpens some smoothly curved features, and
MRPCA makes this situation even worse for its sparse property;
see Figs. 11(d) and 11(c). Besides, RIMLS and our method both
produce visually satisfactory results; see Figs. 11(b) and 11(f).
Nevertheless, from numerical errors listed in Table 3, we observe
that errors of our method are always lower than those of RIMLS.
Thus, for the point cloud with different levels of features, our
method also produces the appealing result with more geometric
features than the other methods.

Fig. 12 demonstrates comparisons on a point cloud containing
multi-scale features. Obviously, our method and all the compared
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Fig. 9. Denoising results of Block (M = 20.0 K, 1.5% noise). From left to right: noisy input, results produced by RIMLS, MRPCA, EAR, ℓ0 , and our method, respectively.
The third row shows the corresponding surface reconstruction results. The zoomed views, showed in the first row, highlight that our method better preserves sharp
features and smoothly curved regions.

Fig. 10. Denoising results of Dodecahedron (M = 10.8 K, 1% noise). From left to right: noisy input, results produced by RIMLS, MRPCA, EAR, ℓ0 , and our method,
respectively. The second row shows the corresponding surface reconstruction results.

methods can effectively remove noise. However, RIMLS smoothes
small-scale features; see the eye regions in Fig. 12(b). EAR pre-
serves large-scale features well, but it sharpens some small-scale
features; see Fig. 12(d). Due to the sparsity requirements, MRPCA
and ℓ0 flatten some smooth regions; see the nose regions in
Figs. 12(c) and 12(e). In contrast, our method outperforms the
other methods in terms of recovering multi-scale features; see
Fig. 12(f).

To further testify the validity of our method, we test it on two
laser scanned point clouds, shown in Figs. 13 and 14. As we can
see in Fig. 13(b), although RIMLS recovers smooth regions well, it
over-smoothes some structure features. In contrast, MRPCA, EAR,
and ℓ0 keep the structures, but they inevitably sharpen smoothly
curved regions, see Figs. 13(c), 13(d) and 13(e). Due to the good

properties of the proposed second order operator, our method can
restore the piecewise smooth structures well. Similarly, MRPCA
and EAR sharpen some fine details, while ℓ0 flattens these details;
see Figs. 14(c), 14(d), and 14(e). As we can see in Fig. 14(b), RIMLS
over-smoothes fine details at small scales. In contrast, our method
preserves fine details better than the compared methods; see the
zoomed views of Fig. 14.

Recently, more and more point clouds are acquired by Kinect
sensors. To evaluate the effectiveness of our method on Kinect
scanning data, we show the comparison results on this type of
data in Fig. 15. As we can see, RIMLS, MRPCA, and ℓ0 induces
artifacts to some extent. In contrast, EAR and our method both
yield visually better denoising results; see Figs. 15(d) and 15(f).
However, from the quantitative comparisons in Table 3, we can



Z. Liu, X. Xiao, S. Zhong et al. / Computer-Aided Design 127 (2020) 102857 9

Fig. 11. Denoising results of Bunny-iH (M = 110.5 K, 1.2% noise). From left to right: noisy input, results produced by RIMLS, MRPCA, EAR, ℓ0 , and our method,
respectively. The third row shows the corresponding surface reconstruction results. The zoomed views, showed in the first row, highlight that our method better
preserves different levels of features and prevents unnatural effects.

Fig. 12. Denoising results of Armadillo (M = 80 K, 0.5% noise). From left to right: noisy input, results produced by RIMLS, MRPCA, EAR, ℓ0 , and our method. The
zoomed views, showed in the first row, highlight that our method better preserves multi-scale geometric features.

Fig. 13. Denoising results of Iron (M = 161 K). From left to right: noisy input, results produced by RIMLS, MRPCA, EAR, ℓ0 , and our method. The zoomed views,
showed in the first row, highlight that our method better keeps smoothly curved features.

find that the errors of our method are always lower than those of
EAR. Thus, even for the data produced by Kinect, our method still

can effectively suppress noise while yield the satisfactory result
containing more faithful features.
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Fig. 14. Denoising results of Rabbit (M = 37.4 K). From left to right: noisy input, results produced by RIMLS, MRPCA, EAR, ℓ0 , and our method. The zoomed views,
showed in the first row, highlight that our method better keeps small-scale features.

Fig. 15. Denoising results of Boy (M = 28.2 K) captured by Kinect. From left to right: noisy input, results produced by RIMLS, MRPCA, EAR, ℓ0 , and our method. The
zoomed views, showed in the first row, highlight that our method better keeps smoothly curved features.

Fig. 16. Denoising results of Nicolos (M = 14.8 K, 0.5% noise). From left to right: noisy input, results produced by RIMLS, MRPCA, EAR, ℓ0 , and our method. The
first row shows the zoomed views.

We also verify the effectiveness of our method on irregular
sampling data. As can be seen in Fig. 16, although the noisy

input is of varying density distributions, similar results can be
observed as those of the examples in Figs. 11 and 12. There
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Fig. 17. Denoising results of Cube corrupted by different levels of noise. The
first row shows noisy point clouds (1%, 2%, 3%, and 4% noise), while the second
row shows the corresponding denoising results produced by our method.

Fig. 18. Denoising result of Octahedron with outliers. Noisy input (left) and the
corresponding denoising result (right).

Fig. 19. Denoising results of Brassempouy. From left to right: noisy input, results
produced by the method in [16] (LPF) and ours.

are over-smoothed effects existing in the result of RIMLS, and
over-sharpen effects existing in those of MRPCA, EAR and ℓ0.
In contrast, our method again produces the more faithful result,
which shows it is robust against irregular sampling.

Fig. 17 shows the robustness of our method against different
levels of noise. As can be seen in Figs. 17(a), 17(b), and 17(c),
our method can effectively remove noise while preserving sharp
features when the noise level increases. However, when the noise
level is too high, our method will fail to produce the satisfactory
result; see Fig. 17(d) for example.

Our method also takes outliers into account when processing
data with a poor quality. Fig. 18 demonstrates that our method is
capable of dealing with outliers.

It is worth to compare our method with the recent one pro-
posed by Digne et al. [16]. They have introduced a framework

Table 4
Running times (in s).
Model RIMLS MRPCA EAR ℓ0 Ours

Block (20.0K) 39.7 48.7 7.07 70.6 34.4
Dodecahedron (10.8K) 17.9 24.8 5.12 26.9 20.8
Bunny-iH (110.5K) 331.0 531.1 305.1 392.3 155.6
Armadillo (80K) 225.7 373.5 206.4 286.7 108.5
Iron (161K) 562.7 2602.9 528.6 657.1 226.9
Rabbit (37.4K) 62.9 124.3 49.6 108.8 47.5
Boy (28.2K) 59.6 75.3 20.9 97.2 41.8
Nicolos (14.8K) 25.8 32.5 6.3 45.8 22.1

for point set denoising by consolidating Local Probing Fields in
the ambient space. Their framework allows the shape to reveal
its non-local similarities, which is good at recovering smooth
features of the shape. In contrast, our method optimizes the point
normal field using ℓ1 norm, which has a better feature-preserving
property. Thus, our method is more robust for preserving geomet-
ric features; see Fig. 19 for example.

6.3. Quantitative comparisons

The above visual comparisons demonstrate that our method
can produce better denoised results than the compared methods.
Here, we further quantitatively compare our method to others on
synthetic data. We utilize the metric Dmean to evaluate position
errors, and the metric Amean to evaluate normal errors. The def-
initions of these two metrics can be found in [31]. We compute
Dmean and Amean for the examples shown in Figs. 9, 10, 11, 12, 15,
and 16, and record these errors in Table 3. As we can observe, the
denoising results produced by our method have the least Dmean
errors in all the cases, and have the least Amean errors in most
cases. These show that the results yielded by our method are
more faithful to the ground truth point clouds.

We also record CPU costs for all the tested methods in Table 4.
As can be seen, for small-scale point clouds, the CPU costs of our
method are reasonable. More importantly, for large-scale point
clouds, our method is faster than all the other methods; see the
CPU costs of Bunny-iH in Fig. 11 and Iron in Fig. 13 which have
more than 100 K points.

7. Conclusion

In this paper, a feature-preserving framework has been pro-
posed to recover a noisy-free point cloud. It first utilizes a second
order regularization to restore the normal field. With the filtered
normals, a well-designed bi-tensor voting scheme is introduced
to detect features, which overcomes the weakness of the normal
and point tensor voting. Finally, point positions are reconstructed
by the multi-normal strategy to reduce cross artifacts. Exper-
imental results show that our denoising method outperforms
the state-of-the-art approaches for preserving different levels of
geometric features without introducing unnatural artifacts.

Besides the denoising application, we expect to extend our
work to handle the wider class of problems, such as point cloud
segmentation, surface reconstruction, and urban architecture
modeling.
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